数学「大学入試良問集」【14−5円と正方形とベクトル】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【14−5円と正方形とベクトル】を宇宙一わかりやすく

問題文全文(内容文):
正方形$ABCD$において、$CD$の中点を$E$とし、$AE$の延長と正方形の外接円との交点を$F$とする。
$\overrightarrow{ AB }=\vec{ a },\overrightarrow{ BC }=\vec{ b }$とするとき、$\overrightarrow{ AF }$を$\vec{ a }$と$\vec{ b }$を用いて表せ。
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#熊本工業大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
正方形$ABCD$において、$CD$の中点を$E$とし、$AE$の延長と正方形の外接円との交点を$F$とする。
$\overrightarrow{ AB }=\vec{ a },\overrightarrow{ BC }=\vec{ b }$とするとき、$\overrightarrow{ AF }$を$\vec{ a }$と$\vec{ b }$を用いて表せ。
投稿日:2021.10.10

<関連動画>

【合格体験記】宅浪で電通大に合格したFくん&シノハラの戦略立案の話【篠原好】

アイキャッチ画像
単元: #その他#勉強法#その他#電気通信大学
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
「宅浪で電通大に合格したFくんの合格体験記と篠原先生の戦略立案」についてお話しています。
この動画を見る 

【高校数学】毎日積分75日目~47都道府県制覇への道~【⑱兵庫】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【神戸大学 2023】
媒介変数表示
$\displaystyle x=sint, y=cos(t-\frac{π}{6})sint (0≦t≦π)$
で表される曲線を$C$とする。以下の問に答えよ。
(1) $\displaystyle \frac{dx}{dt}=0$ または $\displaystyle \frac{dy}{dt}=0$となる$t$の値を求めよ。
(2) $C$の概形を$xy$平面上に描け。
(3) $C$の$y≦0$の部分と$x$軸で囲まれた図形の面積を求めよ。
この動画を見る 

福田の数学〜九州大学2023年文系第4問PART2〜確率漸化式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#確率#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ $w$を$x^3$=1 の虚数解のうち虚部が正であるものとする。さいころを繰り返し投げて、次の規則で4つの複素数0, 1, $w$, $w^2$を並べていくことにより、複素数の列$z_1$, $z_2$, $z_3$, ... を定める。
・$z_1$=0 とする。
・$z_k$まで定まった時、さいころを投げて、出た目を$t$とする。このとき$z_{k+1}$を以下のように定める。
・$z_k$=0 のとき、$z_{k+1}$=$w^t$ とする。
・$z_k$≠0, $t$=1, 2のとき、$z_{k+1}$=0 とする。
・$z_k$≠0, $t$=3のとき、$z_{k+1}$=$wz_k$ とする。
・$z_k$≠0, $t$=4のとき、$z_{k+1}$=$\bar{wz_k}$ とする。
・$z_k$≠0, $t$=5のとき、$z_{k+1}$=$z_k$ とする。
・$z_k$≠0, $t$=6のとき、$z_{k+1}$=$\bar{z_k}$ とする。
ここで複素数$z$に対し、$\bar{z}$は$z$と共役な複素数を表す。以下の問いに答えよ。
(1)$ω^2$=$\bar{ω}$であることを示せ。
(2)$z_n$=0となる確率を$n$の式で表せ。
(3)$z_3$=1, $z_3$=$ω$, $z_3$=$ω^2$となる確率をそれぞれ求めよ。
(4)$z_n$=1となる確率を$n$の式で表せ。

2023九州大学文系過去問
この動画を見る 

福田の数学〜早稲田大学2022年社会科学部第1問〜条件付き確率と大小比較

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
ある国の国民がある病気に罹患している確率を$p$とする。
その病気の検査において、罹患者が陽性と判定される確率を$q$,
非罹患者が陽性と判定される確率を$r$とする。ただし$0 \lt p \lt 1,\ 0 \lt r \lt q$である。
さらに、検査で陽性と判定された人が罹患している確率を$s$とする。次の問いに答えよ。
(1)$s$を$p,\ q,\ r$を用いて表せ。
(2)$k$回すべて陽性と判定されれば最終的に陽性と判断される場合、最終的に陽性
と判断された人が罹患している確率を$a_k$とする。$a_k$を$p,q,r,k$を用いて表せ。
(3)$k$回のうち1回でも陽性と判定されれば最終的に陽性と判断される場合、
最終的に陽性と判断された人が罹患している確率を$b_k$とする。$b_k$を$p,q,r,k$を用いて表せ。
(4)$s,\ a_2,\ b_2$の大小関係を示せ。

2022早稲田大学社会科学部過去問
この動画を見る 

数学「大学入試良問集」【9−3 対数関数と領域図示】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$log_2\ y+2log_y\ x \leqq 3$を満たす点$(x,y)$の存在する領域を図示せよ。
この動画を見る 
PAGE TOP