数学「大学入試良問集」【14−5円と正方形とベクトル】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【14−5円と正方形とベクトル】を宇宙一わかりやすく

問題文全文(内容文):
正方形$ABCD$において、$CD$の中点を$E$とし、$AE$の延長と正方形の外接円との交点を$F$とする。
$\overrightarrow{ AB }=\vec{ a },\overrightarrow{ BC }=\vec{ b }$とするとき、$\overrightarrow{ AF }$を$\vec{ a }$と$\vec{ b }$を用いて表せ。
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#熊本工業大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
正方形$ABCD$において、$CD$の中点を$E$とし、$AE$の延長と正方形の外接円との交点を$F$とする。
$\overrightarrow{ AB }=\vec{ a },\overrightarrow{ BC }=\vec{ b }$とするとき、$\overrightarrow{ AF }$を$\vec{ a }$と$\vec{ b }$を用いて表せ。
投稿日:2021.10.10

<関連動画>

頻出の整数問題!難関大学でよく出る重要な性質【一橋大学】【数学 入試問題】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$ m $を整数とする。3次方程式$ x^3+mx^2+(m+8)x+1=0$は有理数の解$a$を持つ。
(1)$a$は整数であることを示せ。
(2)$m$の値を求めよ

一橋大過去問
この動画を見る 

福田の数学〜慶應義塾大学2024年商学部第2問(4)〜領域と集合の要素の個数

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ (4)$xy$平面上で、不等式$x$≦5 の表す領域を$A$, 不等式$x$+$y$≧10 の表す領域を$B$とする。また、$xy$平面上の点の集合$S$は以下の3つの条件をすべて満たす。
(条件1)$S$に含まれるどの点も、その$x$座標と$y$座標はともに1以上10以下の自然数である。
(条件2)$S$の要素で領域$A$に含まれるものは、領域$B$に含まれる。
(条件3)$S$の要素で領域$B$に含まれるものは、領域$A$に含まれる。
$S$を、条件1~3を満たす中で要素の個数が最大のものとするとき、その要素の個数は$\boxed{シス}$である。
この動画を見る 

7を書く回数?どのように考えますか?【早稲田大学】【数学 入試問題】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
1から$10^{5}$=100000までのすべての整数を、順に十進法で書いたとすると、
数字を全部で何回書いたことになるか?答えよ.

早稲田大過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題013〜京都大学2015年度理系数学第3問〜極限と追い出しの原理

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#数列の極限#微分法#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
aを実数とするとき、(a,0)を通り、$y=e^x+1$に接する直線がただ
一つ存在することを示せ。

(2)$a_1=1$として、$n=1,2,\cdots$について、$(a_n, 0)$を通り、$y=e^x+1$に接する
直線の接点のx座標を$a_{n+1}$とする。このとき、$\lim_{n \to \infty}(a_{n+1}-a_n)$を求めよ。

2015京都大学理系過去問
この動画を見る 

#筑波大学(2018) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#筑波大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} x^2\cos\ x\ dx$

出典:2018年筑波大学
この動画を見る 
PAGE TOP