ルートの大小関係 - 質問解決D.B.(データベース)

ルートの大小関係

問題文全文(内容文):
$\sqrt 2 + \sqrt 3$ , $1 + \sqrt 6$ , $\sqrt {10}$
どれが一番大きい?

札幌光星高等学校
単元: #数学(中学生)#中3数学#平方根#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$\sqrt 2 + \sqrt 3$ , $1 + \sqrt 6$ , $\sqrt {10}$
どれが一番大きい?

札幌光星高等学校
投稿日:2021.11.13

<関連動画>

【数学】中3-23 ルートの問題をつめこんでみた

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$x=3 \sqrt{7}+2$のとき
$x^2-4x+4$の値は?

$x= \sqrt{2}+\sqrt{5}$ ,$y= \sqrt{2}-\sqrt{5} $の時
$x^2 - y^2$の値は?

$ \sqrt{a}+\sqrt{18}= \sqrt{50}$を満たす自然数$a$は?

$ \displaystyle \frac{1}{\sqrt{5}-\sqrt{3}} $を有理化しよう!

◎ $\sqrt{75a}$の値が自然数となるような$a$について…
⑤もっとも小さい$a$は?

⑥2番目に小さい$a$は?
この動画を見る 

令和4年度 灘高校の最初の一問 2022年入試問題解説47問目

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$(\sqrt {2022} + \sqrt {77})^2
-2(\sqrt {2022} + \sqrt {77})(\sqrt {2022} - 1)
+2(\sqrt {2022} - \sqrt {77})(\sqrt {2022} - 1)
-(\sqrt {2022} - \sqrt {77})^2
$

2022灘高等学校
この動画を見る 

平方根の問題 中学レベル

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m,n$を整数とする.
$\sqrt m+\sqrt n=\sqrt{50}$である.
$(m,n)$をすべて求めよ.
この動画を見る 

間違えても落ち込む必要ない。だって中学では習わないから。。。大阪教育大附属天王寺

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$\sqrt{(3.2-π)^2} + \sqrt{(3.1-π)^2}$

大阪教育大学附属高等学校天王寺校舎
この動画を見る 

【数学】中3-17 ルートの変形

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$\sqrt{ }$の中で①になったやつは、$\sqrt{ }$の
外に出てこれる。
逆に、$\sqrt{ }$の外から中に入れるときにも②しよう!!

◎次の数を$\sqrt{ a }$の形にしよう!
③$2\sqrt{ 3 }$
④$6\sqrt{ 2 }$
⑤$\displaystyle \frac{\sqrt{ 18 }}{3}$
⑥$\displaystyle \frac{\sqrt{ 24 }}{2}$

$\sqrt{ }$の中を簡単にするときのポイントは、
4、⑦,⑧,⑨,⑩,・・・・
を使ったかけ算に分解するんだ!!
それで出来ないときは、⑪しよう!!

◎変形して、$\sqrt{ }$の中にできるだけ簡単にしよう!!
⑫$\sqrt{ 8 }$
⑬$\sqrt{ 27 }$
⑭$\sqrt{ 75 }$
⑮$\sqrt{ 360 }$
⑯$\sqrt{ 300 }$
⑰$\sqrt{ 1008 }$
この動画を見る 
PAGE TOP