【中2 数学】 2-①⑤(旧) 連立方程式(加減法) - 質問解決D.B.(データベース)

【中2 数学】  2-①⑤(旧) 連立方程式(加減法)

問題文全文(内容文):
中2 数学 連立方程式(加減法)
次の連立方程式を解け
$\begin{cases}
3x+2y=4 \\
x-y=3
\end{cases}$
単元: #数学(中学生)#中2数学#連立方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
中2 数学 連立方程式(加減法)
次の連立方程式を解け
$\begin{cases}
3x+2y=4 \\
x-y=3
\end{cases}$
投稿日:2012.06.11

<関連動画>

【高校受験対策】数学-図形12

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#円#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図1のような,線分$AB,AC,BC$を
それぞれ直径とする半円を組み合わせた図形があり,
$AB=12cm$,点$C$は線分$AB$の中点である.
このとき,次の各問いに答えよ. ただし,円周率は$\pi$とする.

(1)影をつけた部分の図形について,次の各問いに答えよ.

①面積を求めよ.

②周の長さを求めよ.

(2)右の図2のように,線分$AB$を直径とする半円の弧上に点$P$,
線分$BC$を直径とする半円の弧上に点$Q$をとり,
点$B$と$P$,点$C$と$P$,点$C$と$Q$をそれぞれ結ぶ.
このとき,次の各問いに答えよ.

①$\angle PBC = 65°$とのとき,影をつけた部分の面積を求めよ.

②$\angle PCQ = 90°$のとき,
$\stackrel{\huge\frown}{QB}$と$\stackrel{\huge\frown}{BP}$の長さの和を求めよ.
この動画を見る 

一度は誰もが間違える傾きの範囲

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: 数学を数楽に
問題文全文(内容文):
l:y=axが線分ABと交わる時のaの値の範囲は?
*図は動画内参照
川端高校
この動画を見る 

【高校受験対策/数学】関数-57

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・関数57
Q.
図1のような、$AB=10cm$、$AD=3cm$の長方形$ABCD$がある。
点$P$は$A$から、点$Q$は$D$から同時に動き出し、
ともに毎秒$1cm$の速さで点$P$は辺$AB$上を、点$Q$は辺$DC$上を繰り返し往復する。
2点$P,Q$が動き出してから、$x$秒後の$\triangle APQ$の面積を$y cm^2$とする。
ただし点$P$が$A$にあるとき、$y=0$とする。
このとき次の各問いに答えなさい。

①2点$P,Q$が動き出してから$6$秒後の$\triangle APQ$の面積を求めなさい。

②図2は、$x$と$y$の関係を表したグラフの一部である。
2点$P,Q$が 動き出して$10$秒後から$20$秒後までの$x$と$y$の関係を式で表しなさい。

③点$R$は$A$に、点$S$は$D$にあり、それぞれ静止している。
2点$P,Q$が動き出してから$10$秒後に、2点$R,S$は動き出し、ともに毎秒$0.5cm$の速さで点$R$は辺$AB$上を、点$S$は辺$DC$上を2点$P,Q$と同様に繰り返し往復する。
このとき2点$P,Q$が動き出してから$t$秒後に$\triangle APQ$の面積と四角形$BCSR$の面積が等しくなった。
このような$t$の値のうち、小さいほうから$3$番目の値を求めなさい。

この動画を見る 

近江高校 なぜ?

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
十の位が同じ、一の位の和が10となる2ケタのかけ算
・答えの下2ケタは一の位の数の積
・その上の2ケタは10の位の数とそれに1を加えた数との積
(例)
$
\begin{array}{r}
62 \\[-3pt]
\underline{\times\phantom{0}68}\\[-3pt]
4216 \\[-3pt]
\end{array}
$
42=6×7
16=2×8

近江高等学校
この動画を見る 

息抜き ゆく年くる年連立方程式

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
2019x+2020y=4055 \\
2020x+2019y=4023
\end{array}
\right.
\end{eqnarray}$
これを解け.
この動画を見る 
PAGE TOP