【数学IIB】コレだけやれば50点はとれます【最短で50点突破】(共通テスト) - 質問解決D.B.(データベース)

【数学IIB】コレだけやれば50点はとれます【最短で50点突破】(共通テスト)

問題文全文(内容文):
【数学IIB】点数獲得できる勉強法紹介動画です
単元: #数Ⅱ#大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)#数B
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学IIB】点数獲得できる勉強法紹介動画です
投稿日:2022.09.20

<関連動画>

【共通テスト】第2問_データの分析は20分でマスターする!【数学IA】

アイキャッチ画像
単元: #センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学IA】第2問 データの分析の解説動画です
この動画を見る 

共通テスト2021年数学詳しい解説〜共通テスト2021年IA第2問〜データの分析

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第2問}$
(1)ストライドを$x$, ピッチを$z$とおく。ピッチは1秒あたりの歩数、スト
ライドは1歩あたりの進む距離なので、1秒あたりの進む距離すなわち平
均速度は、$x$と$z$を用いて$\boxed{\boxed{\ \ ア\ \ }}(m/$秒$)$と表される。
これより、タイムと、ストライド、ピッチとの関係は

タイム=$\displaystyle \frac{100}{\boxed{\boxed{\ \ ア\ \ }}}$ $\cdots$①

と表されるので、$\boxed{\boxed{\ \ ア\ \ }}$が最大になるときにタイムが最もよくなる。
ただし、タイムがよくなるとは、タイムの値が小さくなることである。

$\boxed{\boxed{\ \ ア\ \ }}$の解答群
⓪$x+z$
①$z-x$
②$xz$
③$\displaystyle \frac{x+z}{2}$
④$\displaystyle \frac{z-x}{2}$
⑤$\displaystyle \frac{xz}{2}$


(2)男子短距離100m走の選手である太郎さんは、①に着目して、タイム
が最もよくなるストライドとピッチを考えることにした。
次の表は、太郎さんが練習で100mを3回入った時のストライドと
ピッチのデータである。

$\begin{array}{|c|c|c|c|}\hline
& 1回目 & 2回目 & 3回目\\\hline\\
ストライド & 2.05 & 2.10 & 2.15\\\hline\\
ピッチ & 4.70 & 4.60 & 4.50\\\hline
\end{array}\\$

また、ストライドとピッチにはそれぞれ限界がある。太郎さんの場合、
ストライドの最大値は2.40、ピッチの最大値は4.80である。
太郎さんは、上の表から、ストライドが0.05大きくなるとピッチが
0.1小さくなるという関係があると考えて、ピッチがストライドの1次関
数としって表されると仮定した。このとき、ピッチ$z$はストライド$x$を用い


$z=\boxed{\ \ イウ\ \ }\ x+\displaystyle \frac{\boxed{\ \ エオ\ \ }}{5}$ $\cdots$②
と表される。

②が太郎さんのストライドの最大値2.40とピッチの最大値4.80まで
成り立つと仮定すると、xの値の範囲は次のようになる。

$\boxed{\ \ カ\ \ }.\boxed{\ \ キク\ \ } \leqq x \leqq 2.40$
$y=\boxed{\boxed{\ \ ア\ \ }}$とおく。②を$y=\boxed{\boxed{\ \ ア\ \ }}$に代入することにより、
$y$を$x$の関数として表すことができる。太郎さんのタイムが最もよくなる
ストライドとピッチを求めるためには、$\boxed{\ \ カ\ \ }.\boxed{\ \ キク\ \ } \leqq x \leqq 2.40$
の範囲で$y$の値を最大にする$x$の値を見つければよい。このとき、$y$の
値が最大になるのは$x=\boxed{\ \ ケ\ \ }.\boxed{\ \ コサ\ \ }$のときである。
よって、太郎さんのタイムが最もよくなるのは、ストライドが
$\boxed{\ \ ケ\ \ }.\boxed{\ \ コサ\ \ }$のときであり、このとき、ピッチは$\boxed{\ \ シ\ \ }.\boxed{\ \ スセ\ \ }$
である。また、この時の太郎さんのタイムは、①により$\boxed{\boxed{\ \ ソ\ \ }}$である。

$\boxed{\boxed{\ \ ソ\ \ }}$については、最も適当なものを、次の⓪~⑤のうちから一つ選べ。

⓪9.68 ①9.97 ②10.09
③10.33 ④10.42 ⑤10.55


(1)図1(※動画参照)は、1975年度から2010年度まで5年ごとの8個の年度
(それぞれを時点という)における都道府県別の三つの産業の就業者数割合を
箱ひげ図で表したものである。各時点の箱ひげ図は、それぞれ上から順に
第1次産業、第2次産業、第3次産業のものである。

次の⓪~⑤のうち、図1から読み取れることとして正しくないものは
$\boxed{\boxed{\ \ タ\ \ }}と\boxed{\boxed{\ \ チ\ \ }}$である。


$\boxed{\boxed{\ \ タ\ \ }}、\boxed{\boxed{\ \ チ\ \ }}$の解答群(解答の順序は問わない。)

⓪第1次産業の就業者数割合の四分位範囲は、2000年度までは、
後の時点になるにしたがって減少している。
①第1次産業の就業者数割合について、左側のひげの長さと右側の
ひげの長さを比較すると、どの時点においても左側の方が長い。
②第2次産業の就業者数割合の中央値は、1990年度以降、後の
時点になるにしたがって現象している。
③第2次産業の就業者数割合の第1四分位数は、後の時点
になるにしたがって減少している。
④第3次産業の就業者数割合の第3四分位数は、後の時点
になるにしたがって増加している。
⑤第3次産業の就業者数割合の最小値は、後の時点
になるにしたがって増加している。


(2)(1)で取り上げた8時点の中から5時点を取り出して考える。各時点に
おける都道府県別の、第1次産業と第3次産業の就業者数割合のヒストグラム
を一つのグラフにまとめて書いたものが、次ページの5つのグラフである。
それぞれの右側の網掛けしたヒストグラムが第3次産業のものである。
なお、ヒストグラムの各階級の区間は、左側の数値を含み、右側の数値
を含まない。

・1985年度におけるグラフは$\boxed{\boxed{\ \ ツ\ \ }}$である。
・1995年度におけるグラフは$\boxed{\boxed{\ \ テ\ \ }}$である。


$\boxed{\boxed{\ \ ツ\ \ }}、\boxed{\boxed{\ \ テ\ \ }}$については、最も適当なものを、次の⓪~⑤のうち
から一つずつ選べ。ただし、同じものを繰り返し選んでもよい。
(※選択肢は動画参照)


(3)三つの産業から二つずつを組み合わせて都道府県別の就業者数割合の
散布図を作成した。図2の散布図群(※動画参照)は、左から順に1975年度
における第1次産業(横軸)と第2次産業(縦軸)の散布図、第2次産業(横軸)と
第3次産業(縦軸)の散布図、および第3次産業(横軸)と第1次産業(縦軸)の
散布図である。また、図3(※動画参照)は同様に作成した2015年度の散布図群である。


下の$(\textrm{I}),(\textrm{II}),(\textrm{III})$は、1975年度を基準としたときの、2015年度
の変化を記述したものである。ただし、ここで「相関が強くなった」とは、相関係数
の絶対値が大きくなったことを意味する。

$(\textrm{I})$都道府県別の第1次産業の就業者数割合と第2次産業の就業者数割合
の間の相関は強くなった。
$(\textrm{II})$都道府県別の第2次産業の就業者数割合と第3次産業の就業者数割合
の間の相関は強くなった。
$(\textrm{III})$都道府県別の第3次産業の就業者数割合と第1次産業の就業者数割合
の間の相関は強くなった。

$(\textrm{I}),(\textrm{II}),(\textrm{III})$の正誤の組み合わせとして正しいものは$\boxed{\boxed{\ \ ト\ \ }}$である。
(※$\boxed{\boxed{\ \ ト\ \ }の解答群は動画参照}$)


(4)各都道府県の就業者数の内訳として男女別の就業者数も発表されている。
そこで、就業者数に対する男性・女性の就業者数の割合をそれぞれ
「男性の就業者数割合」、「女性の就業者数割合」と呼ぶことにし、これらを
都道府県別に算出した。図4(※動画参照)は、2015年度における都道府県別の、第1
次産業の就業者数割合(横軸)と、男性の就業者数割合(縦軸)の散布図である。

各都道府県の、男性の就業者数と女性の就業者数を合計すると就業者数
の全体となることに注意すると、2015年度における都道府県別の、第1
次産業の就業者数割合(横軸)と、女性の就業者数割合(縦軸)の散布図は
$\boxed{\boxed{\ \ ナ\ \ }}$である。
$\boxed{\boxed{\ \ ナ\ \ }}$については、最も適当なものを、下の⓪~③のうちから
一つ選べ。
(※選択肢は動画参照)

2021共通テスト過去問
この動画を見る 

【共テ数学IIB】知らなきゃ損な裏技集__これで解答時間をキュッと短縮します(指数・対数、微分積分、数列、ベクトル)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#指数関数と対数関数#微分法と積分法#指数関数#対数関数#数列#センター試験・共通テスト関連#共通テスト#数学(高校生)#数B#数C
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【共テ数学IIB】解答時間短縮、裏技集説明動画です。(指数・対数、微分積分、数列、ベクトル)
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題3。確率分布、統計の問題。

アイキャッチ画像
単元: #大学入試過去問(数学)#確率分布と統計的な推測#確率分布#統計的な推測#センター試験・共通テスト関連#共通テスト#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
(1)A地区で保護されるジャガイモには1個の重さが200gを超えるものが
25%含まれることが経験的にわかっている。花子さんはA地区で収穫された
ジャガイモから400個を無作為に抽出し、重さを計測した。そのうち、重さが
200gを超えるジャガイモの個数を表す確率変数をZとする。このときZは
二項分布B($400,0,\boxed{\ \ アイ\ \ }$)に従うから、Zの平均(期待値)は$\boxed{\ \ ウエオ\ \ }$である。

(2)Zを(1)の確率変数とし、A地区で収穫されたジャガイモ400個からなる標本において
重さが200gを超えていたジャガイモの標本における比率を
$R=\frac{Z}{400}$とする。このとき、Rの標準偏差は$\sigma(R)=\boxed{\ \ カ\ \ }$である。
標本の大きさ400は十分に大きいので、Rは近似的に正規分布
$N(0,\boxed{\ \ アイ\ \ },(\boxed{\ \ カ\ \ })^2)$に従う。
したがって、$P(R \geqq x)=0.0465$となるようなxの値は$\boxed{\ \ キ\ \ }$となる。
ただし、$\boxed{\ \ キ\ \ }$の計算においては$\sqrt3=1.73$とする。

$\boxed{\ \ カ\ \ }$の解答群
⓪$\frac{3}{6400}$  ①$\frac{\sqrt3}{4}$  ②$\frac{\sqrt3}{80}$  ③$\frac{3}{40}$ 

$\boxed{\ \ キ\ \ }$については、最も適当なものを、次の⓪~③のうちから一つ選べ。
⓪0.209   ①0.251   ②0.286   ③0.395

(3)B地区で収穫され、出荷される予定のジャガイモ1個の重さは100gから
300gの間に分布している。B地区で収穫され、出荷される予定のジャガイモ
1個の重さを表す確率変数をXとするとき、Xは連続型確率変数であり、X
の取り得る値xの範囲は$100 \leqq x \leqq 300$である。
花子さんは、B地区で収穫され、出荷される予定の全てのジャガイモのうち、
重さが200g以上のものの割合を見積もりたいと考えた。そのために花子さんは
Xの確率密度関数f(x)として適当な関数を定め、それを用いて割合を
見積もるという方針を立てた。
B地区で収穫され、出荷される予定のジャガイモから206個を無作為に抽出
したところ、重さの標本平均は180gであった。
図1(※動画参照)はこの標本のヒストグラムである。

花子さんは図1のヒストグラムにおいて、重さxの増加とともに度数がほぼ
一定の割合で減少している傾向に着目し、Xの確率密度関数f(x)として、1次関数
$f(x)=ax+b (100 \leqq x \leqq 300)$
を考えることにした。ただし、$100 \leqq x \leqq 300$の範囲で$f(x) \geqq 0$とする。
このとき、$P(100 \leqq X \leqq 300)=\boxed{\ \ ク\ \ }$であることから

$\boxed{\ \ ケ\ \ }・10^4a+\boxed{\ \ コ\ \ }・10^2b=\boxed{\ \ ク\ \ } \ldots①$
である。
花子さんは、Xの平均(期待値)が重さの標本平均180gと等しくなるように
確率密度関数を定める方法を用いることにした。
連続型確率変数Xの取り得る値xの範囲が$100 \leqq x \leqq 300$で、その
確率密度関数がf(x)のとき、Xの平均(期待値)mは
$m=\int_{100}^{300}xf(x)dx$
で定義される。この定義と花子さんの採用した方法から
$m=\frac{26}{3}・10^5a+4・10^4b=180 \ldots②$
となる。①と②により、確率密度関数は
$f(x)=-\ \boxed{\ \ サ\ \ }・10^{-5}x+\boxed{\ \ シス\ \ }・10^{-3} \ldots③$
と得られる。このようにして得られた③のf(x)は、$100 \leqq x \leqq 300$の範囲で
$f(x) \geqq 0$を満たしており、確かに確率密度関数として適当である。
したがって、この花子さんお方針に基づくと、B地区で収穫され、出荷される
予定の全てのジャガイモのうち、重さが200g以上のものは$\boxed{\ \ セ\ \ }%$
あると見積もることができる。

$\boxed{\ \ セ\ \ }$については、最も適当なものを、次の⓪~③のうちから一つ選べ。
⓪33 ①34 ②35 ③36

2022共通テスト数学過去問
この動画を見る 

共通テスト第2日程2021年数学詳しい解説〜共通テスト第2日程2021年2B第1問〜対数関数と三角関数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#指数関数と対数関数#三角関数とグラフ#加法定理とその応用#指数関数#対数関数#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第1問}$
[1] (1)$\log_{10}10=\boxed{\ \ ア\ \ }$である。また、$\log_{10}5,\log_{10}15$をそれぞれ
$\log_{10}2と\log_{10}3$を用いて表すと
$\log_{10}5=\boxed{\ \ イ\ \ }\log_{10}2+\boxed{\ \ ウ\ \ }$
$\log_{10}15=$$\boxed{\ \ エ\ \ }\log_{10}2+\log_{10}3+\boxed{\ \ オ\ \ }$
(2)太郎さんと花子さんは、$15^{20}$について話している。
以下では、$\log_{10}2=0.3010、$$\log_{10}3=0.4771$とする。

太郎:$15^{20}$は何桁の数だろう。
花子:$15$の20乗を求めるのは大変だね。$\log_{10}15^{20}$の整数部分に
着目してみようよ。

$\log_{10}15^{20}$は
$\boxed{\ \ カキ\ \ } \lt \log_{10}15^{20}$$ \lt \boxed{\ \ カキ\ \ }+1$
を満たす。よって、$15^{20}は\boxed{\ \ クケ\ \ }$桁の数である。

太郎:$15^{20}$の最高位の数字も知りたいね。だけど、$\log_{10}15^{20}$の
整数部分にだけ着目してもわからないな。
花子:$N・10^{\boxed{カキ}} \lt 15^{20}$$ \lt (N+1)・10^{\boxed{カキ}}$を満たすような
正の整数Nに着目してみたらどうかな。

$\log_{10}15^{20}$の小数部分は$\log_{10}15^{20}-\boxed{\ \ カキ\ \ }$であり
$\log_{10}\boxed{\ \ コ\ \ } \lt \log_{10}15^{20}-\boxed{\ \ カキ\ \ }$$ \lt \log_{10}(\boxed{\ \ コ\ \ }+1)$
が成り立つので、$15^{20}$の最高位の数字は$\boxed{\ \ サ\ \ }$である。


[2]座標平面上の原点を中心とする半径1の円周上に3点$P(\cos\theta,\sin\theta),$
$Q(\cos\alpha,\sin\alpha),R(\cos\beta,\sin\beta)$がある。ただし、$0 \leqq \theta \lt \alpha \lt \beta \lt 2\pi$
とする。このとき、$s$と$t$を次のように定める。
$s=\cos\theta+\cos\alpha+\cos\beta,$$ t=\sin\theta+\sin\alpha+\sin\beta$

(1)$\triangle PQR$が正三角形や二等辺三角形のときの$s$と$t$の値について考察しよう。
考察$1:\triangle PQR$が正三角形である場合を考える。
この場合、$\alpha,\beta$を$\theta$で表すと
$\alpha=\theta+\displaystyle \frac{\boxed{\ \ シ\ \ }}{3}\pi,$$ \beta=\theta+\displaystyle \frac{\boxed{\ \ ス\ \ }}{3}\pi$
であり、加法定理により
$\cos\alpha=\boxed{\boxed{\ \ セ\ \ }}, \sin\alpha=\boxed{\boxed{\ \ ソ\ \ }}$
である。同様に、$\cos\beta$および$\sin\beta$を、$\sin\theta$と$\cos\theta$を用いて表すことができる。
これらのことから、$s=t=\boxed{\ \ タ\ \ }$である。

$\boxed{\boxed{\ \ セ\ \ }},\boxed{\boxed{\ \ ソ\ \ }}$の解答群(同じものを繰り返し選んでもよい。)
⓪$\displaystyle \frac{1}{2}\sin\theta+\displaystyle \frac{\sqrt3}{2}\cos\theta$
①$\displaystyle \frac{\sqrt3}{2}\sin\theta+\displaystyle \frac{1}{2}\cos\theta$
②$\displaystyle \frac{1}{2}\sin\theta-\displaystyle \frac{\sqrt3}{2}\cos\theta$
③$\displaystyle \frac{\sqrt3}{2}\sin\theta-\displaystyle \frac{1}{2}\cos\theta$
④$-\displaystyle \frac{1}{2}\sin\theta+\displaystyle \frac{\sqrt3}{2}\cos\theta$
⑤$-\displaystyle \frac{\sqrt3}{2}\sin\theta+\displaystyle \frac{1}{2}\cos\theta$
②$-\displaystyle \frac{1}{2}\sin\theta-\displaystyle \frac{\sqrt3}{2}\cos\theta$
③$-\displaystyle \frac{\sqrt3}{2}\sin\theta-\displaystyle \frac{1}{2}\cos\theta$

考察2:$\triangle PQR$が$PQ=PR$となる二等辺三角形である場合を考える。

例えば、点$P$が直線$y=x$上にあり、点$Q,R$が直線$y=x$に関して対称
であるときを考える。このとき、$\theta=\displaystyle \frac{\pi}{4}$である。また、$\alpha$は
$\alpha \lt \displaystyle \frac{5}{4}\pi, \beta$は$\displaystyle \frac{5}{4}\pi \lt \beta$を満たし、点$Q,R$の座標について、
$\sin\beta=\cos\alpha, \cos\beta=\sin\alpha$が成り立つ。よって
$s=t=\displaystyle \frac{\sqrt{\boxed{\ \ チ\ \ }}}{\boxed{\ \ ツ\ \ }}+\sin\alpha+\cos\alpha$
である。
ここで、三角関数の合成により
$\sin\alpha+\cos\alpha=$$\sqrt{\boxed{\ \ テ\ \ }}\sin\left(\alpha+\displaystyle \frac{\pi}{\boxed{\ \ ト\ \ }}\right)$
である。したがって

$\alpha=\displaystyle \frac{\boxed{\ \ ナニ\ \ }}{12}\pi, \beta=\displaystyle \frac{\boxed{\ \ ヌネ\ \ }}{12}\pi$

のとき、$s=t=0$である。

(2)次に、$s$と$t$の値を定めるときの$\theta,\alpha,\beta$の関係について考察しよう。
考察$3:s=t=0$の場合を考える。

この場合、$\sin^2\theta+\cos^2\theta=1$により、$\alpha$と$\beta$について考えると
$\cos\alpha\cos\beta+\sin\alpha\sin\beta=\displaystyle \frac{\boxed{\ \ ノハ\ \ }}{\boxed{\ \ ヒ\ \ }}$
である。
同様に、$\theta$と$\alpha$について考えると
$\cos\theta\cos\alpha+\sin\theta\sin\alpha=\displaystyle \frac{\boxed{\ \ ノハ\ \ }}{\boxed{\ \ ヒ\ \ }}$
であるから、$\theta,\alpha,\beta$の範囲に注意すると
$\beta-\alpha=\alpha-\theta=\displaystyle \frac{\boxed{\ \ フ\ \ }}{\boxed{\ \ ヘ\ \ }}\pi$
という関係が得られる。

(3)これまでの考察を振り返ると、次の⓪~③のうち、
正しいものは$\boxed{\boxed{\ \ ホ\ \ }}$であることが分かる。
$\boxed{\boxed{\ \ ホ\ \ }}$の解答群
⓪$\triangle PQR$が正三角形ならば$s=t=0$であり、$s=t=0$ならば
$\triangle PQR$は正三角形である。
①$\triangle PQR$が正三角形ならば$s=t=0$であり、$s=t=0$で
あっても$\triangle PQR$は正三角形でない場合がある。
②$\triangle PQR$が正三角形であっても$s=t=0$でない場合があるが
$s=t=0$ならば$\triangle PQR$は正三角形である。
③$\triangle PQR$が正三角形であっても$s=t=0$でない場合があり、
$s=t=0$であっても$\triangle PQR$が正三角形でない場合がある。
この動画を見る 
PAGE TOP