図形と計量 三角比の相互関係の利用【NI・SHI・NOがていねいに解説】 - 質問解決D.B.(データベース)

図形と計量 三角比の相互関係の利用【NI・SHI・NOがていねいに解説】

問題文全文(内容文):
次の式の値を求めよ。
(1)$(\sin\theta+\cos\theta)^2+(\sin\theta-\cos\theta)^2$
(2)$(1-\sin\theta)(1+\sin\theta)-\dfrac{1}{1+\tan^2\theta}$
チャプター:

0:00 オープニング
0:12 与式を展開する
0:39 三角比の相互関係を使う
1:26 (2)問題確認中
1:36 あとは計算!

単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の式の値を求めよ。
(1)$(\sin\theta+\cos\theta)^2+(\sin\theta-\cos\theta)^2$
(2)$(1-\sin\theta)(1+\sin\theta)-\dfrac{1}{1+\tan^2\theta}$
投稿日:2023.05.24

<関連動画>

中学生にとっては激ムズすぎる 仙台育英(改)

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#2次関数#2次方程式と2次不等式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
2次方程式$2x^2-mx-m=0$の解の1つが1よりも大きいとき、mの値の範囲を求めよ。
(仙台育英学園高等学校 誘導省略)
この動画を見る 

【高校数学】  数Ⅰ-85  三角比⑩

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$0° \leqq \theta \leqq 180°$であるとき、$y=\cos^2\theta-2\sin\theta-1$の最大値と最小値を求め、そのときの$\theta$も求めよう。
この動画を見る 

因数分解は試してなんぼ。立命館宇治(京都)

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
因数分解せよ
$a^2-4ab-3a+4b^2+6b$

立命館宇治高等学校
この動画を見る 

福井大(医)整式 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)#福井大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'08福井大学過去問題
$f(x)=x^2+ax+b,g(x)=x^2+x+1$
$f(x^2)$を$g(x)$で割ったときの余りと、$f(x^4)$を$g(x)$で割ったときの余りが一致し、$f(x^3)$は$g(x)$で割り切れる。
(1)a,bを求めよ。
(2)$f(x^k)$を$g(x)$で割ったときの余り。k自然数
(3)$g(x)$を$f(x)$で割った余りを$C_kx+d_k$
$\displaystyle\sum_{k=1}^nd_k$
この動画を見る 

【数Ⅰ】【図形と計量】三角比の変換応用 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の式の値を簡単にせよ。
(1) sin10°cos80°-sin100°cos170°
(2) 1/(1+sin²20°)-tan²110°
(3) sin²(180°-θ)+sin²(90°-θ)+sin²(90°+θ)+cos²(90°-θ)
この動画を見る 
PAGE TOP