【十分な理解がないと…!】文字式:國學院大學久我山高等学校~全国入試問題解法 - 質問解決D.B.(データベース)

【十分な理解がないと…!】文字式:國學院大學久我山高等学校~全国入試問題解法

問題文全文(内容文):
次の文字式を計算しなさい。(-2x/y)^4×(3y/-z^2)^3×(z/2x)^2
単元: #数学(中学生)#中1数学#文字と式#高校入試過去問(数学)#國學院大學久我山高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
次の文字式を計算しなさい。(-2x/y)^4×(3y/-z^2)^3×(z/2x)^2
投稿日:2025.03.23

<関連動画>

中1数学「正の数・負の数④(数の大小)」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中1数学#正の数・負の数
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
正の数・負の数④(数の大小)に関して解説していきます。
この動画を見る 

証明:沖縄県高校入試~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#平行と合同#相似な図形#平面図形#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 沖縄県の高校

$\triangle AOE \equiv \triangle COF$となる
ことを証明しなさい。

点O:対角線$AC$、$BD$の交点 (平行四辺形$ABCD$)
点E:辺$AB$上の点
点F:直線$EO$と辺$CD$との交点
※根拠となることがらを必ず書くこと!
※図は動画内参照
この動画を見る 

【中学数学】二等辺三角形の証明が誰でもできるようになる方法~二等辺三角形の性質と証明~【中2数学】

アイキャッチ画像
単元: #数学(中学生)#中1数学#平面図形
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
△ABCは AB = AC の二等辺三角形で BD = CE である。
また、CDとBEの交点をFとすると、△FBCは二等辺三角形になることを証明せよ。

※図は動画内参照
この動画を見る 

【受験対策】数学-図形11

アイキャッチ画像
単元: #数学(中学生)#中1数学#空間図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図は,$ AB = 3cm,BC = 2cm,\angle ABC = 90°$の
直角三角形$ABC$を底面とし,
点$D$を頂点とする三角錐であり,
$AD=6cm,\angle ABD= \angle CBD = 90°$である.
また,点$E$は辺$AD$上の点で,$AE = 2cm$である.
このとき,次の各問いに答えなさい.

①この三角錐の体積を求めなさい.

②この三角錐の表面に,点$C$から辺$BD$を通るように,
点$E$まで細い糸をかける.
かけた糸の長さが最も短くなるとき,その糸の長さを求めなさい.
ただし糸はのびたり縮んだりしないものとする.

図は動画内参照
この動画を見る 

【高校受験対策/数学】死守63

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#連立方程式#平方根#2次方程式#確率
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守63


下の図1は、ある都市のある日の天気と気温であり、表示の気温は最高気温と最低気温を表している。
また、[ ]の中の数はある日の最高気温と最低気温が、前日の最高気温と最低気温に比べて何℃高いかを表している。
このときこの都市の前日の最低気温を求めなさい。
※図は動画参照


右上の図2の正方形の面積は50c㎡である。このとき、正方形の1辺の長さを求めなさい。
ただし、根号の中の数はできるだけ小さい自然数にすること。


1枚$a$ gの封筒に、1枚$b$ gの便せんを5枚入れて重さをはかったところ、60gより重かった。
この数量の関係を不等式で表しなさい。



ある店で、ポロシャツとトレーナーを1着ずつ定価で買うと、代金の合計は6300円である。
今日はポロシャツが定価の2割引き、トレーナーが定価より800円安くなっていたため、それぞれ1着ずう買うと、代金の合計は5000円になるという。
このとき、ポロシャツとトレーナーの定価をそれぞれ求めなさい。
ただし、消費税は考えないものとする。


下の図のように、正五角形ABCDEがあり、点Pは はじめに頂点Aの位置にある。
1から6までの目のある2個のさいころを同時に1回投げて、出た目の数の和だけ、点Pは左回りに頂点を順に1つずつ 移動する。
例えば、2個のさいころの出た目の数の和が3のときは、点Pは頂点Dの位置に移動する。
2個のさいころを同時に1回投げるとき、 点Pが頂点Eの位置に移動する確率を求めなさい。
ただし、それぞれのさいころにおいて、1から6までのどの目が出ることも同様に確からしいとする。
この動画を見る 
PAGE TOP