早稲田大(国際教養)対数とガウス記号 - 質問解決D.B.(データベース)

早稲田大(国際教養)対数とガウス記号

問題文全文(内容文):
$x\gt 0$とする.
$m=\left[\log_{10}\dfrac{3\sqrt x}{20}\right]$
$n=\left[\log_{10}\dfrac{800}{x}\right]$
$3m+n$のとりうる値を求めよ.

早稲田(国際教)過去問
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x\gt 0$とする.
$m=\left[\log_{10}\dfrac{3\sqrt x}{20}\right]$
$n=\left[\log_{10}\dfrac{800}{x}\right]$
$3m+n$のとりうる値を求めよ.

早稲田(国際教)過去問
投稿日:2020.09.17

<関連動画>

広島大 素数・対数不等式 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
広島大学過去問題

(1)P自然数
$P^3+(P+1)^3+(P+2)^3$は9の倍数であることを示せ。
(2)P>3  PとP+2がともに素数のときP+1は6の倍数であることを示せ。


不等式$log_2(x-1) \leqq log_4(2x-1)$
この動画を見る 

手を動かすだけの指数方程式

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 2^{x^2-3x}+2^{x-x^2}=2^{1-x}$
これを解け.
この動画を見る 

林俊介 語りかける東大数学

アイキャッチ画像
単元: #対数関数#関数と極限
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)$n\in Z+$

$g(x):=\begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{\cos(\pi x)+1}{2} (\vert x \vert \leq 1) \\
0 (\vert x \vert \gt 1)
\end{array}
\right.
\end{eqnarray}$

$f(x):$連続であり,$p,q \in R$

$\vert x\vert \leq \dfrac{1}{n}$でつねに$p\leq f(x)\leq q$
$p\leq n\dfrac{\displaystyle \int_{-1}^{1} g(nx) f(x) dx\leq q}{I}$を示せ.

(2)$h(x)=:\begin{eqnarray}
\left\{
\begin{array}{l}
-\dfrac{\pi}{2}\sin(\pi x) (\vert x\vert \leq 1) \\
0 (\vert x\vert \gt 1)
\end{array}
\right.
\end{eqnarray}$

次の極限を求めよ.

$\displaystyle \lim_{n\to\infty} n^2\displaystyle \int_{-1}^{1} h(nx)\log(1+e^{x+1})dx $

(1)$g(x)=\begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{\cos(\pi x)+1}{2} (\vert x\vert \leq 1) \\
0 (\vert x\vert \gt 1)
\end{array}
\right.
\end{eqnarray}$

$p\leq n \displaystyle \int_{-1}^{1} g(nx) f(x)dx \leq q$

2015東大過去問
この動画を見る 

大学入試問題#254 神戸大学2012 #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#積分とその応用#定積分#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$2 \leqq n$自然数
$\displaystyle \int_{n}^{n^3}\displaystyle \frac{dx}{x\ log\ x}$を計算せよ。

出典:2012年神戸大学 入試問題
この動画を見る 

聖マリアンナ医大 4次関数と3次関数の共有点の数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#対数関数#学校別大学入試過去問解説(数学)#聖マリアンナ医科大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=2x^3+x^2-5x+3$
$g(x)=x^4+x^2-(k+1)x+k$
$f(x)$と$g(x)$の共有点の個数

出典:2010年聖マリアンナ医科大学 過去問
この動画を見る 
PAGE TOP