大学入試問題#733「教科書の章末問題」 東海大学医学部(2021) 定積分 - 質問解決D.B.(データベース)

大学入試問題#733「教科書の章末問題」 東海大学医学部(2021) 定積分

問題文全文(内容文):
$\displaystyle \int_{\sqrt{ \sqrt{ e }-1 }}^{\sqrt{ e^2-1 }} \displaystyle \frac{x\ log(log(x^2+1))}{x^2+1} dx$

出典:2021年東海大学医学部 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#東海大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\sqrt{ \sqrt{ e }-1 }}^{\sqrt{ e^2-1 }} \displaystyle \frac{x\ log(log(x^2+1))}{x^2+1} dx$

出典:2021年東海大学医学部 入試問題
投稿日:2024.02.12

<関連動画>

福田の数学〜千葉大学2022年理系第9問〜関数が常に増加する条件

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
rを正の実数とし、関数
$f(x)=x+\frac{r}{\sqrt{1+\sin^2x}}$
を考える。
(1)$r=1$のとき、f$(x)$は常に増加することを示せ。
(2)次の条件を満たす最大の正の実数cを求めよ。

条件:$0 \lt r \lt c$のときは$f(x)$が常に増加する。

2022千葉大学理系過去問
この動画を見る 

【高校数学】埼玉大学の積分の問題をその場で解説しながら解いてみた!毎日積分93日目~47都道府県制覇への道~【㊱埼玉】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#埼玉大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【埼玉大学 2017】
関数$f(x)$は微分可能で
$\displaystyle f(x)=x^2e^{-x}+\int_0^xe^{t-x}f(t)dt$
を満たすものとする。次の問いに答えよ。
(1) $f(0),f'(0)$を求めよ。
(2) $f'(x)$を求めよ。
(3) $f(x)$を求めよ。
この動画を見る 

大学入試だけど、中学生も解ける!!(東京理科大)

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
ある2桁の正の整数mを2乗すると下2桁が36になるとき、
m=?

東京理科大学
この動画を見る 

【高校数学】秋田大学の積分の問題をその場で解説しながら解いてみた!毎日積分101日目~47都道府県制覇への道~【㊹秋田】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#秋田大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【秋田大学 2023】
座標平面上に媒介変数$θ$を用いて
$x=2cosθ, y=1+sinθ$
と表される曲線$C$がある。次の問いに答えなさい。
(i) 媒介変数$θ$を消去して$x$と$y$の関係式を求めなさい。
(ii) $\displaystyle θ=\frac{π}{6}$に対応する点における$C$の接線$l$の方程式を求めなさい。
(iii) 曲線$C$と(ii)の接線$l$および$x$軸で囲まれた図形の面積を求めなさい。
この動画を見る 

広島大 対数 3次方程式 解の個数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#指数関数と対数関数#微分法と積分法#剰余の定理・因数定理・組み立て除法と高次方程式#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a$は正の定数
$log_a(3x)+log_{\sqrt{ a }}(a-x)=1$を満たす実数$x$がちょうど2つである$a$の範囲は?

出典:広島大学 過去問
この動画を見る 
PAGE TOP