高等学校入学試験予想問題:関西学院高等部~全部入試問題 - 質問解決D.B.(データベース)

高等学校入学試験予想問題:関西学院高等部~全部入試問題

問題文全文(内容文):
・$(\sqrt{ 5 }-2)(\sqrt{ 5 }+3)-\displaystyle \frac{(\sqrt{ 7 }-2)(\sqrt{ 7 }+\sqrt{ 7 })}{\sqrt{ 20 }}
を計算せよ。


【連立方程式】
$(x+3y):(4x-2y)=3:5$
$3x-5y=12$
$x$と$y$を求めよ。

1から9の数字が書かれたカードが 1枚ずつある。この9枚のカードから3枚を

選んで左から並べて3桁の整数を作る。

(1)整数は全部でいくつか。
(2)偶数はいくつか。
(3) 4の倍数はいくつか。
(4)3の倍数はいくつか

を求めよ。
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#関西学院大学#数学(高校生)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
・$(\sqrt{ 5 }-2)(\sqrt{ 5 }+3)-\displaystyle \frac{(\sqrt{ 7 }-2)(\sqrt{ 7 }+\sqrt{ 7 })}{\sqrt{ 20 }}
を計算せよ。


【連立方程式】
$(x+3y):(4x-2y)=3:5$
$3x-5y=12$
$x$と$y$を求めよ。

1から9の数字が書かれたカードが 1枚ずつある。この9枚のカードから3枚を

選んで左から並べて3桁の整数を作る。

(1)整数は全部でいくつか。
(2)偶数はいくつか。
(3) 4の倍数はいくつか。
(4)3の倍数はいくつか

を求めよ。
投稿日:2023.02.02

<関連動画>

筑波大 3倍角の公式と3次方程式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#三角関数#筑波大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
09年 筑波大学過去問

(1)$\cos 3θ=4\cos ^3θ-\cos θ$を示せ

(2)$2\sin 80^\circ$は$x^3-3x+1=0$の解であることを示せ

(3)$x^3-3x+1=(x-2\sin 80^\circ)$×$(x-2\cosα)$×$(x-2\cosβ)$
となる$α、β(0^\circ\ltα\ltβ\lt180^\circ)$を求めよ
この動画を見る 

横国大・滋賀大 積・商の微分 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#微分とその応用#微分法#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
滋賀大学過去問題
①$\{ f(x)g(x) \} '= f'(x)g(x)+f(x)g'(x) $
②$\frac{d}{dx} \{ f(x) \}^n =n \{ f(x) \}^{n-1}・f'(x)$

横浜国立大学過去問題
$x^3+a(x^2+x-1)=0$が相異3実数解をもつaの範囲
この動画を見る 

福田の入試問題解説アプリの紹介

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
入試問題解説アプリの紹介動画です
この動画を見る 

北里大 三次関数 最大値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#北里大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a \gt 0,a \neq 1$
$f(x)=2x^3-3(a+1)x^2+6ax+1$
$0 \leqq x \leqq 2$において$f(x)$が$x=2$で最大値を取る
$a$の条件を求めよ

出典:北里大学 過去問
この動画を見る 

福田の数学〜東京慈恵会医科大学2023年医学部第4問〜ベクトル方程式と関数の増減

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数C#数Ⅲ#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ Oを原点とする座標空間に2点A(0,0,1), B(0,0,-1)がある。r>0, -π≦θ<πに対して、2点P(r$\cos\theta$,r$\sin\theta$,0),Q($\frac{1}{r}\cos\theta$,$\frac{1}{r}\sin\theta$,0)をとり、2直線APとBQの交点をR(a,b,c)とするとき、次の問いに答えよ。
(1)a,b,cの間に成り立つ関係式を求めよ。
(2)点G(4,1,1)をとる。r,θがr$\cos\theta$=$\frac{1}{2}$を満たしながら変化するとき、内積$\overrightarrow{OG}・\overrightarrow{OR}$の最大値とそのときのa,b,cの値を求めよ。

2023東京慈恵会医科大学医学部過去問
この動画を見る 
PAGE TOP