2023年大阪星光学院中「立体の切断」1 - 質問解決D.B.(データベース)

2023年大阪星光学院中「立体の切断」1

問題文全文(内容文):
2023年大阪星光学院中「立体の切断」1
切断面を想像し、図に書きましょう!!
①IJの延長線と辺EFの延長線の交点をLとし、辺EHの延長線の交点をMとする。
②ALと辺BFの交点がKとなり、AMと辺DHの交点をNとする。
③切断面は、五角形AKIJNとなる。

(1)底面の図形より、LFの辺の長さを求めよ

(2)BKの辺の長さを求めよ
単元: #算数(中学受験)#過去問解説(学校別)#立体図形#体積・表面積・回転体・水量・変化のグラフ#大阪星光学院中学
指導講師: 重吉
問題文全文(内容文):
2023年大阪星光学院中「立体の切断」1
切断面を想像し、図に書きましょう!!
①IJの延長線と辺EFの延長線の交点をLとし、辺EHの延長線の交点をMとする。
②ALと辺BFの交点がKとなり、AMと辺DHの交点をNとする。
③切断面は、五角形AKIJNとなる。

(1)底面の図形より、LFの辺の長さを求めよ

(2)BKの辺の長さを求めよ
投稿日:2023.05.24

<関連動画>

〇〇を作って解こう 吉祥女子中

アイキャッチ画像
単元: #算数(中学受験)#計算と数の性質#いろいろな計算#過去問解説(学校別)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{3}{13} + \frac{8}{19} + \frac{3}{22} + \frac{1}{33} + \frac{3}{38} +\frac{4}{39}$

吉祥寺女子中学校
この動画を見る 

【受験算数】割合:等量交換1

アイキャッチ画像
単元: #算数(中学受験)#文章題#売買損益と食塩水
教材: #SPX#5年算数D-支援#中学受験教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
容器Aには3%の食塩水が600g、容器Bには8%の食塩水が400g入っています。いま、2つの容器からそれぞれ同じ量の食塩水を同時に取り出し、Aから取り出した食塩水はBに、Bから取り出した食塩水はAにそれぞれ移しかえ、よくかき混ぜます。
(1) それぞれの容器から100gずつ取り出して交換すると、容器Aの食塩水の中に含まれる食塩の量は、最初に含まれていた食塩の量と比べて何g増えますか。 もしくは減りますか。
(2) 交換した後の容器AとBの食塩水の中に含まれる食塩の量を等しくするには、 AとBから何gずつの食塩水を取り出して交換すればよいですか。
(3) 交換して2つの容器の食塩水の濃さを等しくすると、濃さは何%になりますか。
この動画を見る 

シンプル過ぎて逆に解けない難問!あなたは必ず引っかかる【中学受験算数】【入試問題】

アイキャッチ画像
単元: #算数(中学受験)#平面図形#角度と面積
指導講師: こばちゃん塾
問題文全文(内容文):
2021鎌倉学園中学校
下図でxの角度がyの1.4倍のとき、角xは何度?

2021城北中学校
下図の四角形ABCDはADとBCが平行な台形です。CA=CB=CDのとき、角㋐は何度?

2021海城中学校
左図でxは何度?

下図のxは何度?

*図は動画内参照
この動画を見る 

【受験算数】神奈川大学附属2022B日程過去問売買損益

アイキャッチ画像
単元: #算数(中学受験)#過去問解説(学校別)#文章題#売買損益と食塩水#神奈川大学附属中学
指導講師: 理数個別チャンネル
問題文全文(内容文):
りんご1個80円でいくつか仕入れ、3600円の利益を見込んで定価をつけて売り始めました。しかし、そのうちの10個が売れ残ったため、実際の利益は2400円となった。このとき定価は何円ですか。
この動画を見る 

【高校受験対策】数学-死守9

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#連立方程式#2次方程式#円#表とグラフ#表とグラフ・集合
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の各問に答えよ.

①$- 7 + 8 \times \left(-\dfrac{1}{4}\right)$を計算せよ.

②$9(a + b) - (a + 3b) $を計算せよ.

③$(\sqrt7 + 6)(\sqrt7 - 2)$ を計算せよ.

④一次方程式$ x - 5 = 3x + 1 $を解け.

⑤連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
4x-y=9 \\
x-6y=8
\end{array}
\right.
\end{eqnarray}$

⑥一次方程式 $x ^ 2 - 12x + 35 = 0 $を解け.

⑦右の表は,
ある中学校の3年生男子全体のハンドボール投げの記録を,
度数分布表に整理したものである.
26m以上投げた生徒の人数は,
3年生男子全体の何%か.

⑧右の図で,2点$C,D$は,線分$AB$を直径とする半円$O$の
$\stackrel{\huge\frown}{AB}$上にある点で,
$\stackrel{\huge\frown}{AC}=\dfrac{4}{9}\stackrel{\huge\frown}{AB},\stackrel{\huge\frown}{BD}=\dfrac{1}{3}\stackrel{\huge\frown}{AB}$である.
線分$AD$と線分$BC$の交点を$E$とするとき,
$\angle AEC$の大きさは何度か.

図は動画内を参照
この動画を見る 
PAGE TOP