福田の共通テスト解答速報〜2022年共通テスト数学IA問題1[3]。三角比と図形の問題。 - 質問解決D.B.(データベース)

福田の共通テスト解答速報〜2022年共通テスト数学IA問題1[3]。三角比と図形の問題。

問題文全文(内容文):
第1問\ [3] 外接円の半径が3である$\triangle ABC$を考える。点Aから直線BCへ引いた垂線と直線BC
との交点をDとする。

(1)$AB=5, AC=4$とする。このとき$\sin\angle ABC=\frac{\boxed{ソ}}{\boxed{タ}}, AD=\frac{\boxed{チツ}}{\boxed{テ}}$ である。

(2) 2辺AB,ACの長さの間に$2AB+AC=14$の関係があるとする。
このとき、ABの長さの取り得る値の範囲は$\boxed{ト} \leqq AB \leqq \boxed{ナ}$であり、
$AD=\frac{\boxed{ニヌ}}{\boxed{ネ}}AB^2+\frac{\boxed{ノ}}{\boxed{ハ}}AB$と表せるので、ADの長さの最大値は$\boxed{ヒ}$である。

2022共通テスト数学過去問
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
第1問\ [3] 外接円の半径が3である$\triangle ABC$を考える。点Aから直線BCへ引いた垂線と直線BC
との交点をDとする。

(1)$AB=5, AC=4$とする。このとき$\sin\angle ABC=\frac{\boxed{ソ}}{\boxed{タ}}, AD=\frac{\boxed{チツ}}{\boxed{テ}}$ である。

(2) 2辺AB,ACの長さの間に$2AB+AC=14$の関係があるとする。
このとき、ABの長さの取り得る値の範囲は$\boxed{ト} \leqq AB \leqq \boxed{ナ}$であり、
$AD=\frac{\boxed{ニヌ}}{\boxed{ネ}}AB^2+\frac{\boxed{ノ}}{\boxed{ハ}}AB$と表せるので、ADの長さの最大値は$\boxed{ヒ}$である。

2022共通テスト数学過去問
投稿日:2022.01.16

<関連動画>

筆算せずに計算する 慶應女子

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{86^2-2 \times 86 \times 77 +77^2}{15^2} +
\frac{15^2+2 \times 15 \times 13 +13^2}{35^2}$
この動画を見る 

【数Ⅰ】中高一貫校用問題集(論理・確率編)集合と命題:命題と条件:必要条件、十分条件の見分け方

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$「x=2」$ならば$「x^2=2x」$であるための○○条件を求めよ.
この動画を見る 

【高校数学】正弦定理の証明~上級者向け~ 3-5.5【数学Ⅰ】

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
【上級者向け】正弦定理の証明説明動画です
この動画を見る 

中学生も解ける??因数分解 福島大

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
因数分解せよ
$x^4+x^2+1+2xy-y^2$

福島大学
この動画を見る 

【数学】中高一貫校用問題集数式・関数編:2次関数の決定

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #TK数学#TK数学問題集3(数式・関数編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の問いに答えよ。
(1)$x^2$の係数が2で、そのグラフが点(1,3)を通り、頂点が直線$y=2x-3$上にあるような2次関数を求めよ。
(2)2次関数$y=x^2-2ax+b$のグラフが点(1,3)を通り、頂点が直線$y=x-10$上にあるとき、定数a,bの値を求めよ。
(3)2次関数$y=2x^2+ax+b$のグラフが点(3,5)を通り、頂点が直線$y=2x-5$上にあるとき、定数a,bの値を求めよ。
この動画を見る 
PAGE TOP