対数 札幌医科大 - 質問解決D.B.(データベース)

対数 札幌医科大

問題文全文(内容文):
①$2^n$が4桁となる自然数を求めよ.
②$5^{130}$は何桁か.

2019札幌医大過去問
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
①$2^n$が4桁となる自然数を求めよ.
②$5^{130}$は何桁か.

2019札幌医大過去問
投稿日:2020.05.03

<関連動画>

早稲田大 対数 2次方程式 負の実数解

アイキャッチ画像
単元: #大学入試過去問(数学)#2次関数#2次方程式と2次不等式#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2+(log_{a}2)x+log_{2}a^2=0$が相異なる負の解をもつ$a$の範囲は?
ただし、$a \gt 0,a \neq 1$

出典:1981年早稲田大学 過去問
この動画を見る 

福田の数学〜上智大学2023年理工学部第3問〜対数関数の積分と数学的帰納法

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#数列#数学的帰納法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ $e$を自然定数の底とする。自然数$n$に対して、
$S_n$=$\displaystyle\int_1^e(\log x)^n dx$
とする。
(1)$S_1$の値を求めよ。
(2)すべての自然数$n$に対して、
$S_n$=$a_n e$+$b_n$, ただし$a_n$, $b_n$はいずれも整数
と表されることを証明せよ。
この動画を見る 

これ読み解ける??

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$y=\displaystyle \frac{1n(\displaystyle \frac{x}{m}-sa)}{r^2}$
この動画を見る 

【短時間でポイントチェック!!】常用対数のよく出る演習問題〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
$\log_{ 10 } 2=0.3010,\log_{ 10 } 3=0.4771$
①$\log_{10}6$
②$\log_{10}5$
③$\log_{10}30$
この動画を見る 

11兵庫県教員採用試験(数学:1-4番 対数)

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
1⃣(4)$x \geqq 2$ , $y \geqq \frac{1}{2}$ , $ xy=64$
$(log_2x)(log_2y)$
の最大値、最小値を求めよ。
この動画を見る 
PAGE TOP