【数C】空間ベクトル:四面体ABCDに関し、次の等式を満たす点Pはどのような位置にある点か。AP+2BP-7CP-3DP=0 - 質問解決D.B.(データベース)

【数C】空間ベクトル:四面体ABCDに関し、次の等式を満たす点Pはどのような位置にある点か。AP+2BP-7CP-3DP=0

問題文全文(内容文):
四面体ABCDに関し、次の等式を満たす点Pはどのような位置にある点か。
AP+2BP-7CP-3DP=0
チャプター:

0:00 オープニング
0:05 問題文
0:12 問題解説
4:37 答え
4:59 名言

単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
四面体ABCDに関し、次の等式を満たす点Pはどのような位置にある点か。
AP+2BP-7CP-3DP=0
投稿日:2021.01.17

<関連動画>

【高校数学】 数B-43 空間ベクトルの内積③

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①4点$A(8,2,-3),B(1,3,2),C(5,1,8),D(3,-3,6)$を頂点とする
四面体$ABCD$がある.$AB\perp BC,AB\perp BD$であることを示し,
四面体$ABCD$の体積を求めよう.

②4点$0(0,0,0),A(4,0,2),B(3,3,3),C(3,0,4)$を頂点とする
四面体$OABC$の体積を求めよう.
この動画を見る 

【数C】【空間ベクトル】4点A(1,0,0)、B(0,1,0)、C(0,0,2)、D(1,2,3)がある。△ABCの面積Sと、四面体ABCDの体積Vを求めよ。

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
4点A(1,0,0)、B(0,1,0)、C(0,0,2)、D(1,2,3)がある。△ABCの面積Sと、四面体ABCDの体積Vを求めよ。
この動画を見る 

【高校数学】 数B-36 2点間の距離①

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
2点A(x.y.z.)、B($x_2,y_2,z_2$)間の距離は
AB=①_________________

◎次の2点間の距離を求めよう。

②A(2.-1.3)、B(4.3.-1) ③O(0.0.0)、A(4.-2.2)

④3点A(3.1.5)、B(2.4.3)、C(1.2.3)を頂点とする△ABCはどのような三角形?
この動画を見る 

福田の数学〜立教大学2023年経済学部第1問(5)〜共面条件

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (5)$t$を実数とする。座標空間において、3点O(0,0,0), A(1,0,2), B(2,-1,0)の定める平面OAB上に点C($t$+1,$t$,1-$t$)があるとき、$t$=$\boxed{\ \ オ\ \ }$である。
この動画を見る 

福田の数学〜共通テスト対策にもバッチリ〜杏林大学2023年医学部第2問後編〜平面と直線の交点の位置ベクトルと体積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数C
指導講師: 福田次郎
問題文全文(内容文):
点 O を原点とする座標空間に 3 点 A(-1,0,-2), B(-2,-2, -3 ), C(1, 2,- 2 )がある。
(a)ベクトル$\overrightarrow{ AB }と\overrightarrow{ AC }の内積は\overrightarrow{ AB }・\overrightarrow{ AC }=\fbox{ アイ }$であり、$\angle ABCの外接円の半径は\sqrt{\fbox{ウエ}}$である。$\angle ABC$の外接円の中心を点 P とすると、
$\overrightarrow{ AP }=\fbox{オ}\overrightarrow{ AB }+\frac{\fbox{カ}}{\fbox{キ}}\overrightarrow{ AC }$
が成り立つ。
(b)$\angle ABC$の重心を点 G とすると、$\overrightarrow{ OG }=\frac{\fbox{ク}}{\fbox{ケ}}(\overrightarrow{ OA }
+\overrightarrow{ OB }+\overrightarrow{ OC })$であり、線分OBを 2 : 1 に内分する点を Q とすると、$\overrightarrow{ AQ }=(\frac{\fbox{コサ}}{\fbox{シ}},\frac{\fbox{スセ}}{\fbox{ソ}},\fbox{タ})$となる。
(c)線分 OC を 2 : I に内分する点を R とし、 3 点 A, Q, R を通る平面を$\alpha$と直線OG との交点を S とする。点 S は平面にあることから、
$\overrightarrow{ OS }=t\overrightarrow{ OA }+u\overrightarrow{ OB }+v\overrightarrow{ OC }$
(ただし、$t,u,vはt+\frac{\fbox{チ}}{\fbox{ツ}}u+\frac{\fbox{テ}}{\fbox{ト}}v=1$を満たす実数)
と書けるので、$\overrightarrow{ OS }=\frac{\fbox{ナ}}{\fbox{ニ}}\overrightarrow{ OG }$となることがわかる。
平面$\alpha$上において、点Sは三角形AQRの$\fbox{ヌ}$に存在し、四面体 O-AQR の体積は四面体のO-ABCの体積の$frac{\fbox{ネ}}{\fbox{ノ}}$倍である。

2023杏林大学過去問
この動画を見る 
PAGE TOP