共通テスト数学を、数学者が解いてみた結果【大学受験数学】 - 質問解決D.B.(データベース)

共通テスト数学を、数学者が解いてみた結果【大学受験数学】

問題文全文(内容文):
第5問 (選択問題) (配点 20)

△ABCの重心をGとし、線分AG上で点Aとは異なる位置に点Dをとる。直 線AGと辺BCの交点をEとする。また、直線BC上で辺BC上にはない位置に 点Fをとる。直線DFと辺ABの交点をP、直線DFと辺ACの交点をQとす る。

(1) 点Dは線分AGの中点であるとする。このとき、△ABCの形状に関係なく

AD/DE=ア/イ

である。また、点下の位置に関係なく

BP/AP=ウ×エ/オ
CQ/AQ = カ×キ/ク

であるので、つねに

BP/AP + CQ/AQ = ケ

となる。









の解答群(同じものを繰り返し選ん

でもよい。)

①BC

➁BF

③CF

④EF

⑤FP

⑥FQ

⑦PQ

数学1、数字A

[2] 以下の問題を解答するにあたっては、必要に応じて41 ページの三角比の 表を用いてもよい。

太郎さんと花子さんは、キャンプ場のガイドブックにある地図を見なが ら、後のように話している。


参考図


太郎:キャンプ場の地点Aから山頂Bを見上げる角度はどれくらいか な。

花子:地図アプリを使って、地点Aと山頂Bを含む断面図を調べた ら、図1のようになったよ。点Cは、山頂Bから地点Aを通る 水平面に下ろした垂線とその水平面との交点のことだよ。

太郎:図1の角度は、AC、BCの長さを定規で測って、三角比の表を 用いて調べたら16°だったよ。

花子:本当に16なの? 図1の鉛直方向の縮尺と水平方向の縮尺は等 しいのかな?

数学Ⅰ・数学A

[3] 外接円の半径が3である△ABCを考える。点Aから直線BCに引いた垂 線と直線BCとの交点をDとする。

(1) AB = 5 AC=4とする。このとき
単元: #数学#共通テスト
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
第5問 (選択問題) (配点 20)

△ABCの重心をGとし、線分AG上で点Aとは異なる位置に点Dをとる。直 線AGと辺BCの交点をEとする。また、直線BC上で辺BC上にはない位置に 点Fをとる。直線DFと辺ABの交点をP、直線DFと辺ACの交点をQとす る。

(1) 点Dは線分AGの中点であるとする。このとき、△ABCの形状に関係なく

AD/DE=ア/イ

である。また、点下の位置に関係なく

BP/AP=ウ×エ/オ
CQ/AQ = カ×キ/ク

であるので、つねに

BP/AP + CQ/AQ = ケ

となる。









の解答群(同じものを繰り返し選ん

でもよい。)

①BC

➁BF

③CF

④EF

⑤FP

⑥FQ

⑦PQ

数学1、数字A

[2] 以下の問題を解答するにあたっては、必要に応じて41 ページの三角比の 表を用いてもよい。

太郎さんと花子さんは、キャンプ場のガイドブックにある地図を見なが ら、後のように話している。


参考図


太郎:キャンプ場の地点Aから山頂Bを見上げる角度はどれくらいか な。

花子:地図アプリを使って、地点Aと山頂Bを含む断面図を調べた ら、図1のようになったよ。点Cは、山頂Bから地点Aを通る 水平面に下ろした垂線とその水平面との交点のことだよ。

太郎:図1の角度は、AC、BCの長さを定規で測って、三角比の表を 用いて調べたら16°だったよ。

花子:本当に16なの? 図1の鉛直方向の縮尺と水平方向の縮尺は等 しいのかな?

数学Ⅰ・数学A

[3] 外接円の半径が3である△ABCを考える。点Aから直線BCに引いた垂 線と直線BCとの交点をDとする。

(1) AB = 5 AC=4とする。このとき
投稿日:2024.01.05

<関連動画>

【日本最速解答速報】共通テスト2023数学1A 第4問【今となっては過去問解説】

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)#数学#共通テスト
指導講師: 理数個別チャンネル
問題文全文(内容文):
共通テスト2023数学1A 第4問解説していきます.
この動画を見る 

福田の数学〜2023年共通テスト速報〜数学IA第4問整数〜長方形のタイルを並べて長方形を作る

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 福田次郎
問題文全文(内容文):
第4問
色のついた長方形を並べて正方形や長方形を作ることを考える。色のついた長方形は、向きを変えずにすき間なく並べることとし、色のついた長方形は十分あるものとする。
(1)横の長さが462で縦の長さが110である赤い長方形を、図1(※動画参照)のように並べて正方形や長方形を作ることを考える。
462と110の両方を割り切る素数のうち最大のものは$\boxed{\ \ アイ\ \ }$である。
赤い長方形を並べて作ることができる正方形のうち、辺の長さが最小であるものは、一辺の長さが$\boxed{\ \ ウエオカ\ \ }$のものである。
また、赤い長方形を並べて正方形ではない長方形を作るとき、横の長さと縦の長さの差の絶対値が最小になるのは、462の約数と110の約数を考えると、差の絶対値が$\boxed{\ \ キク\ \ }$になるときであることがわかる。
縦の長さが横の長さより$\boxed{\ \ キク\ \ }$長い長方形のうち、横の長さが最小であるものは、横の長さが$\boxed{\ \ ケコサシ\ \ }$のものである。
(2)花子さんと太郎さんは、(1)で用いた赤い長方形を1枚以上並べて長方形を作り、その右側に横の長さが363で縦の長さが154である青い長方形を1枚以上並べて、図2(※動画参照)のような正方形や長方形を作ることを考えている。
このとき、赤い長方形を並べてできる長方形の縦の長さと、青い長方形を並べてできる長方形の縦の長さは等しい。よって、図2のような長方形のうち、縦の長さが最小のものは、縦の長さが$\boxed{\ \ スセソ\ \ }$のものであり、図2のような長方形は縦の長さが$\boxed{\ \ スセソ\ \ }$の倍数である。
二人は、次のように話している。
花子:赤い長方形と青い長方形を図2のように並べて正方形を作ってみようよ。
太郎:赤い長方形の横の長さが462で青い長方形の横の長さが363だから、図2のような正方形の横の長さは462と363を組み合わせて作ることができる長さでないといけないね。
花子:正方形だから、横の長さは$\boxed{\ \ スセソ\ \ }$の倍数でもないといけないね。
462と363の最大公約数は$\boxed{\ \ タチ\ \ }$であり、$\boxed{\ \ タチ\ \ }$の倍数のうちで$\boxed{\ \ スセソ\ \ }$の倍数でもある最小の正の整数は$\boxed{\ \ ツテトナ\ \ }$である。
これらのことと、使う長方形の枚数が赤い長方形も青い長方形も1枚以上であることから、図2のような正方形のうち、辺の長さが最小であるものは、一辺の長さが$\boxed{\ \ ニヌネノ\ \ }$のものであることがわかる。

2023共通テスト過去問
この動画を見る 

【日本最速解答速報】共通テスト2023数学1A 第5問【今となっては過去問解説】

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)#数学#共通テスト
指導講師: 理数個別チャンネル
問題文全文(内容文):
共通テスト2023数学1A 第5問解説していきます.
この動画を見る 

2024年共通テスト徹底解説〜数学ⅡB第2問微分積分〜福田の入試問題解説

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 福田次郎
問題文全文(内容文):
共通テスト2024の数学ⅡB第2問微分積分を徹底解説します

2024共通テスト過去問
この動画を見る 

2024年共通テスト解答速報〜数学ⅠA第4問整数の性質〜福田の入試問題解説

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 福田次郎
問題文全文(内容文):
T 3 、 T 4 、 T 6 を次のようなタイマ ー とする。
T3 : 3 進数を 3 桁表示するタイマ ー
T4 : 4 進数を 3 桁表示するタイマ ー
T 6 : 6 進数を 3 裄表示するタイマ ー
なお、第進数とは進法で表された数のことである。これらのタイマ ー は.すべて次の表示方法に従うものとする。
表示方法
(a) スタ ー トした時点でタイマ ー は 000 と表示されている。
(b)タイマ ー は、スタ ー トした後、表示される数が1秒ごとに1ずつ増えていき、3 析で表示できる最大の数が表示された1秒後に.表示が000に戻る。
(c)タイマ ー は表示が 000 に戻った後も(b )と同様に表示される数が 1秒ごとに1ずつ増えていき、3 裄で表示できる最大の数が表示された1秒後に、表示が 000 に戻るという動作を繰り返す。
例えば、 T3 はスタ ー トしてから 3 進数でに$12_{ (3) }$秒後に012 と表示される。その後 222 と表示された1秒後に表示が000に戻り、その$12_{ (3) }$秒後に再び012と表示される。
( 1 ) T6 は、スタ ー トしてから 10 進数で 40 秒後にアイウと表示される。T4 は、スタ ー トしてから 2 進数で$10011_{ (2) }$秒後にエオカと表示される。
( 2 ) T 4 をスタ ー トさせた後、初めて表示が 000 に戻るのは、スタ ー トしてから10 進数でキク秒後であり、その後もキク秒ごとに表示が 000 に戻る。同様の考察を T 6 に対しても行うことにより、 T 4 と T 6 を同時にスタートさせた後、初めて両方の表示が同時に 000 に戻るのは.スタ ー トしてから 10 進でケコサシ秒後であることがわかる。
( 3 ) 0 以上の整数$\ell$に対して、T 4 をスタ ー トさせた$\ell$秒後に T4 が 012と表示されることと
$\ell$をスセで割った余りがソであることは同値である。ただしスセとソは10進法で表されているものとする。T3 についても同様の考察を行うことにより、次のことがわかる。T3 と T4 を同時にスタ ー トさせてから、初めて両方が同時に 012 と表示されるまでの時間をm秒とするとき、mは 10 進法でタチツと表される。
また、 T4とT6 の表示に関する記述として.次の0~3のうち、正しいものはテである。
0 T4 と T6 を同時にスタ ー トさせてから、m秒後より前に初めて両方が同時に 012 と表示される。
1 T4 と T6 を同時にスタ ー トさせてから、ちょうどm秒後に初めて両方が同時に 0 と表示される。
2 T4 と T6 を同時にスタ ー トさせてから、m秒後より後に初めて両方が同時に 012 と表示される。
3 T4 と T6 を同時にスタ一トさせてから、両方が同時に 012 と表示されることはない。

2024共通テスト過去問
この動画を見る 
PAGE TOP