【数C】ベクトル:二点を通る直線・空間版 - 質問解決D.B.(データベース)

【数C】ベクトル:二点を通る直線・空間版

問題文全文(内容文):
A(-2,1,-1)とB(1,3,2)を通る直線の方程式を求めよ。変数x,y,zを用いて表せ。
チャプター:

0:00 オープニング
0:24 問題文
0:36 どうやって解いていくか
1:22 空間の2点を通る直線の解き方
2:50 ベクトル方程式の使い方
8:09 エンディング

単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
A(-2,1,-1)とB(1,3,2)を通る直線の方程式を求めよ。変数x,y,zを用いて表せ。
投稿日:2021.09.24

<関連動画>

福田の数学〜東京慈恵会医科大学2023年医学部第4問〜ベクトル方程式と関数の増減

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数C#数Ⅲ#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ Oを原点とする座標空間に2点A(0,0,1), B(0,0,-1)がある。r>0, -π≦θ<πに対して、2点P(r$\cos\theta$,r$\sin\theta$,0),Q($\frac{1}{r}\cos\theta$,$\frac{1}{r}\sin\theta$,0)をとり、2直線APとBQの交点をR(a,b,c)とするとき、次の問いに答えよ。
(1)a,b,cの間に成り立つ関係式を求めよ。
(2)点G(4,1,1)をとる。r,θがr$\cos\theta$=$\frac{1}{2}$を満たしながら変化するとき、内積$\overrightarrow{OG}・\overrightarrow{OR}$の最大値とそのときのa,b,cの値を求めよ。

2023東京慈恵会医科大学医学部過去問
この動画を見る 

【数C】【空間ベクトル】平行六面体OADB-CEGFにおいて、線分OA,OB,GE,GF,OCの中点をそれぞれP,Q,R,S,Tとし重心をGとする。四角形PRSQは平行四辺形であることを示せ。

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
線分OA,OB,OCを3辺とする平行六面体OADB-CEGFにおいて、線分OA,OB,GE,GF,OCの中点をそれぞれP,Q,R,S,Tとし、△ABCの重心をGとする。
(1) 四角形PRSQは平行四辺形であることを示せ。
(2) 3点T,H,Dは一直線上にあることを示し、TH:HDを求めよ
この動画を見る 

福田の数学〜北里大学2021年医学部第1問(1)〜空間ベクトルの内積と平面に下ろした垂線の長さ

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#図形と計量#三角比(三角比・拡張・相互関係・単位円)#平面上のベクトルと内積#空間ベクトル#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
(1)一辺の長さが4の正四面体ABCDにおいて、辺BCの中点をEとおく。
動点Pは$PE=\frac{1}{2}AE$を満たしながら$\triangle AED$の内部および周上を動くものとし、
$\angle PED=\theta$とおく。このとき、$\overrightarrow{ PB }・\overrightarrow{ PC }=\boxed{ア}$である。また、$\overrightarrow{ PB }・\overrightarrow{ PC }$を
$\theta$を用いて表すと$\overrightarrow{ PC }・\overrightarrow{ PD }=\boxed{イ}$、その最大値は$\boxed{ウ}$である。
$\overrightarrow{ PC }・\overrightarrow{ PD }$が最大となるときの点Pと平面ACDの距離は$\boxed{エ}$である。

2021北里大学医学部過去問
この動画を見る 

線形代数:部分空間の判定 #線形代数 #部分空間 #ベクトル空間

アイキャッチ画像
単元: #平面上のベクトル#空間ベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
次の集合がベクトル空間の部分空間をなすか判定せよ.

(1)$W_1=\left[\begin{pmatrix}
x \\
y \\
z
\end{pmatrix} \in IR^3 | x\neq 2y\right]$

(2)$W_2=\left[\begin{pmatrix}
x \\
y \\
z
\end{pmatrix} \in IR^3 | x+2y+3z=0 \right]$

(3)$W_3=\left[\begin{pmatrix}
x \\
y \\
z
\end{pmatrix} \in IR^3 | x+2y+3z\geqq 0 \right]$
この動画を見る 

【数B】空間ベクトル:4点(1,1,1) (-1,1,-1) (-1,-1,0) (2,1,0)を通る球面の方程式を求めよう。また、中心座標と半径も求めよう。

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
4点(1,1,1) (-1,1,-1) (-1,-1,0) (2,1,0)を通る球面の方程式を求めよう。また、中心座標と半径も求めよう。
この動画を見る 
PAGE TOP