【高校受験対策】数学-関数42 - 質問解決D.B.(データベース)

【高校受験対策】数学-関数42

問題文全文(内容文):
高校受験対策・関数42

Q.
右下の図において、直線①、②はそれぞれ関数$y=\frac{1}{2}x$、$y=ax$のグラフであり、②は①を$y$軸の対称の軸として対称移動したものである。
直線③は、直線①上の点$A(4,2)$と$x$軸上の点$B(8,0)$を通る。
また点$P$は、原点$O$を出発して、直線①上を点$A$まで動く点であり、点$P$を通り$x$軸に平行な直線と直線②、③との交点をそれぞれ$C,D$とする。

①$a$の値を求めなさい。

②直線③の式を求めなさい。

③点$P$の$x$座標を$t$、$△ACD$の面積を$S$とするとき、$S$を$t$の式で表しなさい。

④$△APD$の面積が$△OPC$の面積の4倍となるとき、点$P$の座標を求めなさい。
単元: #数学(中学生)#中1数学#中2数学#1次関数#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・関数42

Q.
右下の図において、直線①、②はそれぞれ関数$y=\frac{1}{2}x$、$y=ax$のグラフであり、②は①を$y$軸の対称の軸として対称移動したものである。
直線③は、直線①上の点$A(4,2)$と$x$軸上の点$B(8,0)$を通る。
また点$P$は、原点$O$を出発して、直線①上を点$A$まで動く点であり、点$P$を通り$x$軸に平行な直線と直線②、③との交点をそれぞれ$C,D$とする。

①$a$の値を求めなさい。

②直線③の式を求めなさい。

③点$P$の$x$座標を$t$、$△ACD$の面積を$S$とするとき、$S$を$t$の式で表しなさい。

④$△APD$の面積が$△OPC$の面積の4倍となるとき、点$P$の座標を求めなさい。
投稿日:2019.09.11

<関連動画>

【数検3級】中学数学:数学検定3級2次:問題9

アイキャッチ画像
単元: #数学(中学生)#中1数学#数学検定・数学甲子園・数学オリンピック等#資料の活用#数学検定#数学検定3級
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題9.次の問いに答えなさい。
(19) ある中学校の1年生の生徒数は18人、2年生の生徒数は27人、3年生の生徒数は20人です。それぞれの学年の通学時間を調べて平均を求めると、1年生は15.5分、2年生は32.0分、3年生は21.5分でした。生徒全体の通学時間の平均は何分ですか。
(20) いくつかの値からなるデータの中に極端にかけ離れた値があると、平均値はその値に強く影響を受けてしまうことがあります。
 Aさんは5つの正の整数を思い浮かべました。これらの数の平均値は2021です。このとき、Aさんが思い浮かべた可能性がある数
の最大値を求めなさい。ただし、5つの数に同じ数があってもよいものとします。
この動画を見る 

【高校受験対策】数学-図形26

アイキャッチ画像
単元: #数学(中学生)#中1数学#空間図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・図形26
Q.
右の図は1辺の長さが8cmの正四面体$OABC$を表している。

①辺$OA,OB,OC$上にそれぞれ点$D,E,F$を、$OD:DA=1:2$、$OE:EB=1:2$、$OF:FC=1:2$
となるようにとる。
このとき正四面体$OABC$を3点$D,E,F$を通る平面で分けたときにできる2つの立体のうち
頂点$A$をふくむ立体の体積は正四面体$OABC$の体積の何倍か求めよ。

②$BC$の中点を$G$とし、辺$OA$上に、点$H$を$OH=GH$となるようにとる。
点$A$と点$G$を結び、点$H$から線分$AG$に垂線をひき、線分$AG$との 交点を$I$とする。
このとき線分$HI$の長さを求めよ。
この動画を見る 

【高校受験対策/数学】死守64

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#方程式#式の計算(単項式・多項式・式の四則計算)#平方根#空間図形#確率#文字と式#標本調査
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守64

①$\sqrt{26}\div\sqrt{2}$を計算しなさい

➁$2\sqrt{7} \times 3\sqrt{2}$を計算しなさい。

③$5\sqrt{3}+\sqrt{96}-8\sqrt{6}-\sqrt{27}$を計算しなさい。

④$5 \lt \sqrt{a} \leqq 6$を満たす整数$a$の個数を求めなさい。

⑤3点$A(2,1)$、$B(6,-5)$、$C(k,10)$が一直線上にあるとき、$k$の値を求めなさい。

⑥右の表は、あるクラスの女子20人の握力の記録を度数分布表にまとめたものです。
この20人の記録の平均値を求めなさい。

⑦大、小2個のさいころを同時に投げるとき、大きいさいころの出た目の数を$a$、小さいさいころの出た目の数を$b$とします。
このとき$\frac{b}{a}$が整数となる確率を求めなさい。

⑧A地点からB地点に行くのに、A地点から途中にあるC地点までは時速$a$ kmで2時間歩き、C地点からB地点までは時速$b$ kmで3時間歩きました。
このとき平均の速さは時速何kmか、$a$、$b$を用いた式で表しなさい。

⑨右の図は、1辺の長さが9cmの立方体から、頂点Aに集まる 3辺 AB、AD、AEをそれぞれ3等分する点のうち、
頂点Aに近い方の3点、P、Q、Rを通る平面で頂点Aを切り取り、同様に頂点B、C、Dも切り取ったものです。
このとき立体の体積は何㎥か求めなさい。
この動画を見る 

【考え方は1分でOK!】空間図形:名古屋女子大学高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中1数学#空間図形#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$A,B,C$の表面積の比を最も簡単な整数の比で表しなさい.

名古屋女子大学高等学校過去問
この動画を見る 

【テスト対策 中1】4章-1

アイキャッチ画像
単元: #数学(中学生)#中1数学#比例・反比例
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の2つの数量$x,y$について、$y$が$x$に比例するものには○、反比例するものには△、
どちらでもないものには×をつけなさい。
また、○と△については、$x,y$の関係を式に表しなさい。

①1本$x$円のジュース8本の代金$y$円

②時速50kmの速さで走る自動車は、$x$時間に$y$km進む

③身長$xcm$の人の体重は$y$kgである

④30km離れた場所に、時速$xkm$の自転車で行くと$y$時間かかる

⑤半径$xcm$の円の面積は$ycm$である

⑥120個のアメを$x$人に同じ数で分けると、1人分は$y$個である
この動画を見る 
PAGE TOP