【高校数学】数Ⅲ-50 分数関数とそのグラフ① - 質問解決D.B.(データベース)

【高校数学】数Ⅲ-50 分数関数とそのグラフ①

問題文全文(内容文):
次の関数のグラフをかけ。
また、その漸近線を求めよ。

①$y=\dfrac{1}{2x}$

②$y=\dfrac{3}{x+3}-1$

③$y=\dfrac{3}{x-1}+2$

図は動画内参照
単元: #数学(中学生)#中2数学#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の関数のグラフをかけ。
また、その漸近線を求めよ。

①$y=\dfrac{1}{2x}$

②$y=\dfrac{3}{x+3}-1$

③$y=\dfrac{3}{x-1}+2$

図は動画内参照
投稿日:2017.08.10

<関連動画>

連立方程式:豊島岡女子学園高等学校~全国入試問題解法【神授業】

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#方程式#連立方程式#高校入試過去問(数学)#豊島岡女子高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 豊島岡女子学園高等学校

ある中学校の合唱部の2017年の部員数は、女子が$x$ 人、男子が64人でした。2018年の部員数は、2017 年と比べて女子が$y$%減り、男子が$y$%増えました。 2019年の部員数は、2018年と比べて女子が40%増 え、男子が$y$%減りました。

2019年の部員数が、女子が63人、男子が60人のとき
$x$の値を求めなさい。
(ただし、$ y\gt 0$)
この動画を見る 

中2数学「連立方程式の文章題⑦(電車の速さ)」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中2~連立方程式の文章題⑦~

例題
ある電車が1.5kmの鉄橋を渡り始めてから渡り終わる (電車の速さ) までに、1分10秒かかりました。
また、同じ早さで1.2kmのトンネルを通過するとき、電車が完全にかくれていたのは38秒でした。
この電車の長さは何mですか。また、速さは秒速何mですか。
この動画を見る 

【高校受験対策/数学】関数49

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数#高校入試過去問(数学)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・関数49

Q
右の図で点oは原点であり、四角形OABCは、4点o、 A$(5,0)$、B$(5,2)$、C$(0,7)$を頂点とする台形である。
また、直線$l$は関数$y=-\frac{1}{4}x+a$のグラフで ある。各問いに答えよ。

①点Aを通り直線$l$に平行な直線の式を求めよ。

②直線$l$と直線BCとの交点をDとする。
$a=4$のとき、 線分CDの長さは線分DBの長さの何倍か。

③直線$l$が台形OABCの面積を2等分するとき、$a$の値を求めよ。
この動画を見る 

【高校受験対策/数学】死守62

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#2次方程式#空間図形#文字と式#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守62

①$1+(-0.2)\times 2$を計算しなさい。

②方程式$\frac{2x+4}{3}=4$を解きなさい。

③$a=\frac{1}{2},b=3$のとき、 $3(a-2b)-5(3a-b)$の値を 求めなさい。

④$x$についての方程式
$x^2-2ax+3=0$の解の1つが$-1$であるとき、もう1つの解を求めなさい。

⑤1個$a$ kgの品物3個と1個$b$ kgの品物2個の合計の重さは20kg以上である。
この数量の関係を不等式で表しなさい。

⑥右の図のように、側面がすべて長方形の正六角柱がある。
このとき、辺ABとねじれの位置にある辺の数を求めなさい。

⑦家から$a$ m離れた博物館まで、行きは毎分60m、帰りは毎分90mの速さで往復した。
往復の平均の速さは分速( )mである。( )にあてはまる数を求めなさい。

⑧次のア~エのことがらについて、逆が正しいものを1つ選んで記号を書きなさい。

ア 正三角形はすべての内角が等しい三角形である。
イ 長方形は対角線がそれぞれの中点で交わる四角形である。
ウ $x \geqq 5$ならば$x \gt 4$である。
エ $x=1$ならば$x^2=1$である。

⑨右図のように直線$l$上に2点O,Pがある。
点Oを回転の中心として点Pを時計回りに45°回転移動させた点Qを、定規とコンパスを用いて作図しなさい。
ただし作図に用いた線は消さないこと。
この動画を見る 

【高校受験対策】数学-死守23

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#2次方程式#確率#立体図形#立体切断#立体図形その他#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$-5-(-9)$を計算せよ.

②$- 2 ^ 2 \times 3$を計算せよ.

③$xy ^ 2 \times 6y \div 3xy$を計算せよ.

④$(x - 7)(x - 4) + 8x$を計算せよ.

⑤1次方程式$x + 4 = 5(2x - 1)$を解け.

⑥2次方程式$x ^ 2 + 3x - 18 = 0$を解け.

⑦$2\lt \sqrt a \lt \dfrac{10}{3}$をみたす正の整数のは何個あるか.

⑧図1で,2直線$\ell,m$は平行であり,
$\triangle ABC$は$AB = AC$の二等辺三角形である.
また,頂点$A,C$はそれぞれ $\ell m$上にある.
$\angle x$の大きさを求めよ.

⑨図2は,底面の半径が$3cm$,母線の長さが$ 9cm$の円すいである.
この円すいの体積を求めよ.ただし,円周率は$\pi$とする.

⑩図3は,女子生徒20人のハンドボール投げの記録をヒストグラムに表したもので,
平均値は12.2mであった.
このヒストグラムから読み取れることについて述べた次のア~エのうち,
正しいものをすべて選び,その記号を書け.

ア 中央値 (メジアン) は,平均値よりも小さい.
イ 最頻値(モード)は,平均値よりも大きい.
ウ 記録が12m未満の生徒は,全体の半数以上である.
工 記録が16m以上の生徒は,全体の20%である.

⑪図4で,数直線上を動く点$P$は,最初,原点$O$にある.
点$P$は,1枚の硬貨を1回投げるごとに,表が出れば正の方向に2だけ移動し,
裏が出れば負の方向に1だけ移動する.
硬貨を3回投げて移動した結果,点$P$が原点$O$にある確率を求めよ.

図は動画内参照
この動画を見る 
PAGE TOP