「三角比の値と相互関係」【高校数学ⅠA】を宇宙一わかりやすく - 質問解決D.B.(データベース)

「三角比の値と相互関係」【高校数学ⅠA】を宇宙一わかりやすく

問題文全文(内容文):
1.$\sin\theta,\cos\theta,\tan\theta$のうち、1つが次のように与えられたとき、他の2つの値を求めよ。
  (1)$\sin\theta=\displaystyle \frac{1}{3}(0^{ \circ } \leqq \theta \leqq 180^{ \circ })$
    $\sin^2\theta+\cos^2\theta=1$より
    $\left[ \dfrac{ 1 }{ 3 } \right]+\cos^2\theta=1$
    $\cos^2\theta=\displaystyle \frac{8}{9}$ $\Rightarrow\cos\theta=\pm \displaystyle \frac{2\sqrt{ 2 }}{3}$
    $\tan\theta=\displaystyle \frac{\sin\theta}{\cos\theta}$より
    $\tan\theta=\displaystyle \frac{1}{3}\div\left[ \pm \dfrac{ 2\sqrt{ 2 } }{ 3 } \right]$
    $=\pm \displaystyle \frac{1}{2\sqrt{ 2 }}=\pm \displaystyle \frac{\sqrt{ 2 }}{4}$



  (2)$\tan\theta=-3(0^{ \circ } \leqq \theta \leqq 180^{ \circ })$
    $1+\tan^2\theta=\displaystyle \frac{1}{\cos^2\theta}$より
    $2+(-3)^2=\displaystyle \frac{1}{\cos^2\theta}$
    $\cos^2\theta=\displaystyle \frac{1}{10}$
    ここで、$\tan\theta \lt 0$より$\cos\theta \lt 0$であるから
    $\cos\theta=-\displaystyle \frac{1}{\sqrt{ 10 }}$
    $\tan\theta=\displaystyle \frac{\sin\theta}{ \cos\theta }$より$\sin\theta=\tan\theta\cos\theta$
    $\tan\theta=-3\left[ -\dfrac{ 1 }{ \sqrt{ 10 } } \right]=\displaystyle \frac{3}{ \sqrt{ 10 } }$
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
1.$\sin\theta,\cos\theta,\tan\theta$のうち、1つが次のように与えられたとき、他の2つの値を求めよ。
  (1)$\sin\theta=\displaystyle \frac{1}{3}(0^{ \circ } \leqq \theta \leqq 180^{ \circ })$
    $\sin^2\theta+\cos^2\theta=1$より
    $\left[ \dfrac{ 1 }{ 3 } \right]+\cos^2\theta=1$
    $\cos^2\theta=\displaystyle \frac{8}{9}$ $\Rightarrow\cos\theta=\pm \displaystyle \frac{2\sqrt{ 2 }}{3}$
    $\tan\theta=\displaystyle \frac{\sin\theta}{\cos\theta}$より
    $\tan\theta=\displaystyle \frac{1}{3}\div\left[ \pm \dfrac{ 2\sqrt{ 2 } }{ 3 } \right]$
    $=\pm \displaystyle \frac{1}{2\sqrt{ 2 }}=\pm \displaystyle \frac{\sqrt{ 2 }}{4}$



  (2)$\tan\theta=-3(0^{ \circ } \leqq \theta \leqq 180^{ \circ })$
    $1+\tan^2\theta=\displaystyle \frac{1}{\cos^2\theta}$より
    $2+(-3)^2=\displaystyle \frac{1}{\cos^2\theta}$
    $\cos^2\theta=\displaystyle \frac{1}{10}$
    ここで、$\tan\theta \lt 0$より$\cos\theta \lt 0$であるから
    $\cos\theta=-\displaystyle \frac{1}{\sqrt{ 10 }}$
    $\tan\theta=\displaystyle \frac{\sin\theta}{ \cos\theta }$より$\sin\theta=\tan\theta\cos\theta$
    $\tan\theta=-3\left[ -\dfrac{ 1 }{ \sqrt{ 10 } } \right]=\displaystyle \frac{3}{ \sqrt{ 10 } }$
投稿日:2020.12.24

<関連動画>

サクサク解こう

アイキャッチ画像
単元: #平方根#数と式
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x \geqq 0,y \geqq 0$とする.

$\begin{eqnarray}
\left\{
\begin{array}{l}
x\sqrt x+y\sqrt y=19 \\
x\sqrt y+y\sqrt x=15
\end{array}
\right.
\end{eqnarray}$
これを解け.
この動画を見る 

円 令和4年度 2022 入試問題100題解説99問目! 愛知県

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
AD=?
*図は動画内参照

2022愛知県
この動画を見る 

大阪公立大 7の80乗の下5桁

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)#大阪公立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 7^{80}$の下5桁を求めよ.

大阪公立大過去問
この動画を見る 

軸が動く2次関数の場合分け 最大値 #Shorts

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
軸が動く2次関数の場合分け 最大値に関して解説していきます.
この動画を見る 

平方数 大分県

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$460-20n=k^2$(kは自然数)
となるような自然数nの値をすべて求めよ。
大分県
この動画を見る 
PAGE TOP