佐賀県立高校入試2021年2⃣連立方程式 - 質問解決D.B.(データベース)

佐賀県立高校入試2021年2⃣連立方程式

問題文全文(内容文):
佐賀県立高校入試2021年2⃣連立方程式
-----------------
A中学校とB中学校の合計45人のバレーボール部員が、3日間の合同練習をすることになった。
練習場所の近くには山と海があり、最終日のレクリエーションの時間にどちらに行きたいか希望調査をしたところ、動画内の表のような結果になった。
ただし、山または海の希望は、45人の部員全員がどちらか一方だけを希望したものとする。

(ア)
2校のバレーボール部員の人数をそれぞれ求めるために、A中学校バレーボール部員の人数を$x$人、B中学校バレーボール部員の人数を$y$人として、あとのような連立方程式をつくった。
このとき、①にあてはまる式と②にあてはまる方程式を、$x,y$を用いてそれぞれ表しなさい。
$\begin{eqnarray}
\left\{
\begin{array}{l}
① = 45 \\

\end{array}
\right.
\end{eqnarray}$

(イ)
A中学校バレーボール部員の人数と、B中学校バレーボール部員の人数をそれぞれ求めなさい。
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)#佐賀県立高校
指導講師: 重吉
問題文全文(内容文):
佐賀県立高校入試2021年2⃣連立方程式
-----------------
A中学校とB中学校の合計45人のバレーボール部員が、3日間の合同練習をすることになった。
練習場所の近くには山と海があり、最終日のレクリエーションの時間にどちらに行きたいか希望調査をしたところ、動画内の表のような結果になった。
ただし、山または海の希望は、45人の部員全員がどちらか一方だけを希望したものとする。

(ア)
2校のバレーボール部員の人数をそれぞれ求めるために、A中学校バレーボール部員の人数を$x$人、B中学校バレーボール部員の人数を$y$人として、あとのような連立方程式をつくった。
このとき、①にあてはまる式と②にあてはまる方程式を、$x,y$を用いてそれぞれ表しなさい。
$\begin{eqnarray}
\left\{
\begin{array}{l}
① = 45 \\

\end{array}
\right.
\end{eqnarray}$

(イ)
A中学校バレーボール部員の人数と、B中学校バレーボール部員の人数をそれぞれ求めなさい。
投稿日:2023.02.09

<関連動画>

2021 帝塚山 B 図形問題

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#平面図形#三角形と四角形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
四角形AEGH=△GFC
*図は動画内参照

2021帝塚山高等学校
この動画を見る 

【裏技】二等分線の〇●の角度の裏技です

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
二等分線の〇●の角度の裏技紹介動画です
この動画を見る 

【中学数学】1次関数:関数決定マスターへの道 4発目! 変化の割合編

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件を満たす1次関数を求めよ。 変化の割合が-1で、x=5のときy=7
この動画を見る 

中2数学「1次関数の利用③(給水と排水)」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中2~1次関数の利用③~ 例題 (給水と排水)
容積が120Lの容器に40Lの水が 入っています。この容器に一定の割合で 水を入れながら、途中で容器の底にある 栓を開いて、一定の割合で排水しました。 右の図は、水を入れはじめてから父分後の から火分後の 容器の水の量をりしとして、水を入れはじ めてから8分後までの父との関係を グラフに表したものです。

(1)Xの変域が次のときの直線の式を 求めなさい。

(2)店からは、毎分何しの割合で 水が出ていますか。
この動画を見る 

【受験対策】 数学-図形⑥

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#平行と合同#円
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①右の図で、四角形ABCDは、AB=7cm、BC=4cmの長方形です。
この長方形を辺ABを軸として1回転させてできる立体の表面積を 求めよう。
ただし、円周率をπとする。

② 右の図のように、正五角形ABCDEの頂点、B、Dを通る直線をそれぞれℓ,mとする。ℓ//mであるとき、∠xの大きさを求めよう。

③右の図は、立方体の展開図である。
この展開図を組み立てて立方体をつくるとき、面アと垂直になる面を、 面イ~カからすべて選ぼう。

※図は動画内参照
この動画を見る 
PAGE TOP