【数学】中2-20 連立方程式の利用① お金編 - 質問解決D.B.(データベース)

【数学】中2-20 連立方程式の利用① お金編

問題文全文(内容文):
①________を$X,y$とおいて
2つの式を作ろう!!

②$1$個$80$円のみかんと$1$個$130$円のりんごを
あわせて$10$個買うと$950$円でした。
みかんとりんごの買った数はそれぞれいくつ?

③とあるテーマパークに行ったら、おとな$2$人と子ども$3$人で$11800$円、 おとな$1$人と子ども$2$人で$6800$円でした。
おとな$1$人分と子ども$1$人分の入場料は それぞれいくら?

④なし$4$個とすいか$1$個を買うと$1070$円、
なし$3$個とすいか$2$個を買うと$1590$円になる。
なし$1$個とすいか$1$個の値段はそれぞれいくら?
単元: #数学(中学生)#中2数学#連立方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①________を$X,y$とおいて
2つの式を作ろう!!

②$1$個$80$円のみかんと$1$個$130$円のりんごを
あわせて$10$個買うと$950$円でした。
みかんとりんごの買った数はそれぞれいくつ?

③とあるテーマパークに行ったら、おとな$2$人と子ども$3$人で$11800$円、 おとな$1$人と子ども$2$人で$6800$円でした。
おとな$1$人分と子ども$1$人分の入場料は それぞれいくら?

④なし$4$個とすいか$1$個を買うと$1070$円、
なし$3$個とすいか$2$個を買うと$1590$円になる。
なし$1$個とすいか$1$個の値段はそれぞれいくら?
投稿日:2013.05.22

<関連動画>

【中学数学】中学数学:数学検定3級2次:問題1・2

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#式の計算(単項式・多項式・式の四則計算)#数学検定・数学甲子園・数学オリンピック等#空間図形#文字と式#数学検定#数学検定3級
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題1.右の図は、縦の長さがa ㎝、横の長さがb ㎝の長方形と、1辺の長さがc ㎝の正方形です。次の問いに答えなさい。
(1) 長方形の周の長さを、a、b を用いて表しなさい。
(2) 長方形の面積の2倍と正方形の面積を合わせた面積は150 ㎝²未満です。この数量の関係を表した式はどれですか。
下の①~⑥の中から1つ選びなさい。
   ① 2ab + c² > 150  ② 2ab + c² ≧ 150  ③ 2ab + c² < 150  
   ④ 2ab + c² ≦ 150  ⑤ a²b²+ c² < 150  ⑥ a²b²+ c² ≦ 150
 
問題2.底面が1辺8㎝の正方形で、高さが6㎝の2つの正四角錐があります。右の図の八面体ABCDEFは、この2つの正四角錐を
ぴったり合わせたものです。次の問いに答えなさい。
(3) 辺CDとねじれの位置にある辺はどれですか。すべて答えなさい。
(4) この八面体の体積は何㎝³ですか。単位をつけて答えなさい。
この動画を見る 

連立方程式の解がない!! 開成高校

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
連立方程式の解がないとき定数aの値を求めよ。
\begin{eqnarray}
\left\{
\begin{array}{l}
2x + ay = a \\
(-1+4a-a^2)x+ay=1
\end{array}
\right.
\end{eqnarray}

開成高等学校
この動画を見る 

近江高校 なぜ?

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
十の位が同じ、一の位の和が10となる2ケタのかけ算
・答えの下2ケタは一の位の数の積
・その上の2ケタは10の位の数とそれに1を加えた数との積
(例)
$
\begin{array}{r}
62 \\[-3pt]
\underline{\times\phantom{0}68}\\[-3pt]
4216 \\[-3pt]
\end{array}
$
42=6×7
16=2×8

近江高等学校
この動画を見る 

【受験対策】数学-証明2

アイキャッチ画像
単元: #数学(中学生)#中2数学#平行と合同
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図で,$\triangle ABC$は$AB=AC$の二等辺三角形,
$\triangle ACD$は$AC=AD$の二等辺三角形で,
頂点$D$から辺$CB$に平行な直線をひき,
辺$AB$との交点を$E$とする.
$AB=DE$のとき,次の各問いに答えなさい.

①$\triangle ABC$と$\triangle DEA$が合同であることを証明しなさい.

②$BD$と$AC$との交点を$F$とする.
$BC=BF$のとき,$\angle BAD$の大きさを求めなさい.

図は動画内参照
この動画を見る 

【高校受験対策/数学】死守-90

アイキャッチ画像
単元: #数学(中学生)#中1数学#正の数・負の数#方程式#平方根#2次方程式#確率#2次関数#文字と式#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守90

①$6-5-(-2)$を計算しなさい。

②$a=4$のとき、$6a^2÷3a$の値を求めなさい。

③$\sqrt{2}×\sqrt{6}×\frac{9}{\sqrt{3}}$を計算しなさい。

④方程式$x^2+5x-6=0$を解きなさい。

⑤2点$A(1,7)$、$B(3,2)$の間の距離を求めなさい。

⑥$4 \lt \sqrt{a}\lt \frac{13}{3}$に当てはまる整数$a$の値をすべて求めなさい。

⑦右の図の①~④の放物線は、下のア~エの関数のグラフです。
①と④はそれぞれどの関数のグラフですか。
ア~エの中から選びその記号をそれぞれ書きなさい。

ア $y=x^2$
イ $y=\frac{1}{3}x^2$
ウ $y=2x^2$
エ $y=-\frac{1}{2}x^2$

⑧数字を書いた4枚のカード①、②、③、④が袋Aの中に、
数字を書いた3枚のカード①、②、③が袋Bの中に入っています。
それぞれの袋からカードを1枚ずつ取り出すとき、
その2枚のカードに書いてある数の和が6以上になる確率を求めなさい。
この動画を見る 
PAGE TOP