【数学】2020年度1月 第4回 K塾記述高2模試 全問解説 - 質問解決D.B.(データベース)

【数学】2020年度1月 第4回 K塾記述高2模試 全問解説

問題文全文(内容文):
大問1(小問集合)
(1)$\dfrac{12}{3-\sqrt5}$の整数部分をa、小数部分をbとする。(i)aの値を求めよ。(ii)$b^2+10b$の値を求めよ。
(2)aを実数の定数とする。関数$f(x)=2x^2-6x+a$の$0\leqq x\leqq 1$における最小値が3となるようなaの値を求めよ。
(3)三角形ABCにおいて、$AB=3、BC=4、CA=2$である。$\cos\angle BAC$の値と三角形ABCの外接円の半径を求めよ。
(4)方程式$x^3-x^2-x-2=0$を解け。
(5)円$x^2+y^2=4$上の点($1, \sqrt3$)における接線の方程式を求めよ。
(6)方程式$4^x-5・2-(x+1)+24=0$を解け。
大問2(三角関数)
三角形OABにおいて、$OA=\sqrt3-1、OB=\sqrt2、\angle AOB=\dfrac{3\pi}{4}$が成り立っている。辺AB上(両端を含まない)に点Cをとり、直線OC上に点Dを、3点O、C、Dがこの順に並び、OD=2となるようにとる。$∠AOD=\theta\left(0\lt\theta\lt \dfrac{3\pi}{4}\right)$とおくとき、次の問に答えよ。
(1)三角形OADの面積を$\theta$を用いて表せ。
(2)三角形OBDの面積を$\sin\theta、\cos\theta$を用いて表せ。
(3)Cが辺AB上を動くとき、四角形OADBの面積の最大値、および、最大値を与える$\theta$の値を求めよ。
大問3(場合の数)
0から7までの数字が1つずつ書かれたカードが1枚ずつ、合計8枚のカードがある。この8枚のカードから3枚を選んで左から1列に並べ、2桁、もしくは3桁の整数Nを作る。例えば、012と並べたときは2桁の数で、$N=12$とし、123と並べたときは3桁の数で、$N=123$とする。
(1)2桁のN、3桁のNはそれぞれ何通りできるか。
(2)2桁のNのうち、十の位の数と一の位の数の和が7とならないものは何通りできるか。
(3)百の位が7のとき、どの2つの位の数の和も7とならないものは何通りできるか。
(4)3桁のNのうち、どの2つの位の数の和も7とならないものは何通りできるか。
大問4(微分法)
【問題文】
a、bを実数の定数とする。関数$f(x)=x^3+ax^2+bx+a^2$は$x=-1$で極大値14をとるとする。
(1)a、bの値を求めよ。
(2)$y=f(x)$のグラフとx軸は異なる3点で交わり、そのx座標を小さい方から順に$\alpha,\beta,γ$とする。
(i)$\alpha\gt -3$を示せ。
(ii)$P(3,0)、B(\beta,0)、C(γ,0)$とする。線分PBとPCの長さの大小を比較せよ。
大問5(数列)
【問題文】
2つの数列${a_n}{b_n}$が$a_1=\dfrac{3}{2}、a_{n+1}=\dfrac{3}{2a_n-\dfrac{1}{2}} (n=1,2,3,...)$$ b_1=p、b_{n+1}=b_n+p-\dfrac{1}{2\left(\dfrac{3}{2}\right)^{n-1}} (n=1,2,3,...)$ を満たしている。ただし、pは整数とする。
(1)$a_n$をnの式で表せ。
(2)$b_n$をpとnの式で表せ。
(3)$c_n=b_n-a_n$とする。$c_n$が$n=4$で最大となるようなpの値を求めよ。
チャプター:

0:00 オープニング
0:05 第1問の問題文
0:20 (1)解説:整数部分と小数部分、式の値
5:11 (2)解説:2次関数の最小値
7:14 (3)解説:余弦定理と正弦定理、面積
11:13 (4)解説:高次方程式
14:41 (5)解説:円上の点の接線、その証明
17:54 (6)解説:指数方程式
20:40 名言
20:50 第2問の問題文
21:05 (1)解説:三角形の面積
22:22 (2)解説:三角形の面積
24:48 (3)解説:四角形の最大値
28:12 名言
28:21 第3問の問題文
28:36 (1)解説:2桁、3桁になるとき
30:04 (2)解説:2桁で桁の和が7にならない
30:56 (3)解説:百の位が7のとき桁の和が7にならない
32:11 (4)解説:3桁のNのうち桁の和が7にならない
33:29 名言
33:38: 第4問の問題文
33:53 (1)解説:極値からわかること
39:16 (2-i)解説:グラフを用いた証明
41:12 (2-ii)解説:線分の長さの大小
42:52 (2-ii)別解:解と係数の関係の利用
46:24 名言
46:33 第5問の問題文
46:48 (1)解説:漸化式(特性方程式型)
49:53 (2)解説:漸化式(階差型)
53:14 (3)解説:c[n]が最大になるとき
1:00:05 名言
1:00:14 エンディング

単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
大問1(小問集合)
(1)$\dfrac{12}{3-\sqrt5}$の整数部分をa、小数部分をbとする。(i)aの値を求めよ。(ii)$b^2+10b$の値を求めよ。
(2)aを実数の定数とする。関数$f(x)=2x^2-6x+a$の$0\leqq x\leqq 1$における最小値が3となるようなaの値を求めよ。
(3)三角形ABCにおいて、$AB=3、BC=4、CA=2$である。$\cos\angle BAC$の値と三角形ABCの外接円の半径を求めよ。
(4)方程式$x^3-x^2-x-2=0$を解け。
(5)円$x^2+y^2=4$上の点($1, \sqrt3$)における接線の方程式を求めよ。
(6)方程式$4^x-5・2-(x+1)+24=0$を解け。
大問2(三角関数)
三角形OABにおいて、$OA=\sqrt3-1、OB=\sqrt2、\angle AOB=\dfrac{3\pi}{4}$が成り立っている。辺AB上(両端を含まない)に点Cをとり、直線OC上に点Dを、3点O、C、Dがこの順に並び、OD=2となるようにとる。$∠AOD=\theta\left(0\lt\theta\lt \dfrac{3\pi}{4}\right)$とおくとき、次の問に答えよ。
(1)三角形OADの面積を$\theta$を用いて表せ。
(2)三角形OBDの面積を$\sin\theta、\cos\theta$を用いて表せ。
(3)Cが辺AB上を動くとき、四角形OADBの面積の最大値、および、最大値を与える$\theta$の値を求めよ。
大問3(場合の数)
0から7までの数字が1つずつ書かれたカードが1枚ずつ、合計8枚のカードがある。この8枚のカードから3枚を選んで左から1列に並べ、2桁、もしくは3桁の整数Nを作る。例えば、012と並べたときは2桁の数で、$N=12$とし、123と並べたときは3桁の数で、$N=123$とする。
(1)2桁のN、3桁のNはそれぞれ何通りできるか。
(2)2桁のNのうち、十の位の数と一の位の数の和が7とならないものは何通りできるか。
(3)百の位が7のとき、どの2つの位の数の和も7とならないものは何通りできるか。
(4)3桁のNのうち、どの2つの位の数の和も7とならないものは何通りできるか。
大問4(微分法)
【問題文】
a、bを実数の定数とする。関数$f(x)=x^3+ax^2+bx+a^2$は$x=-1$で極大値14をとるとする。
(1)a、bの値を求めよ。
(2)$y=f(x)$のグラフとx軸は異なる3点で交わり、そのx座標を小さい方から順に$\alpha,\beta,γ$とする。
(i)$\alpha\gt -3$を示せ。
(ii)$P(3,0)、B(\beta,0)、C(γ,0)$とする。線分PBとPCの長さの大小を比較せよ。
大問5(数列)
【問題文】
2つの数列${a_n}{b_n}$が$a_1=\dfrac{3}{2}、a_{n+1}=\dfrac{3}{2a_n-\dfrac{1}{2}} (n=1,2,3,...)$$ b_1=p、b_{n+1}=b_n+p-\dfrac{1}{2\left(\dfrac{3}{2}\right)^{n-1}} (n=1,2,3,...)$ を満たしている。ただし、pは整数とする。
(1)$a_n$をnの式で表せ。
(2)$b_n$をpとnの式で表せ。
(3)$c_n=b_n-a_n$とする。$c_n$が$n=4$で最大となるようなpの値を求めよ。
投稿日:2022.12.16

<関連動画>

【数学】(高2生必見!!)2019年度 第3回 K塾高2模試 全問解説

アイキャッチ画像
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
大問1:小問集合
(1)2次不等式$x^2+5x-6\lt 0$を解け。
(2)9人の生徒を3人ずつA,B,Cの3つの組に分けるとき、分け方は何通りか。
(3)次のデータがある。3,5,5,6,7,10.このデータの平均値を求めよ。また、分散を求めよ。
(4)$(4x+1)^5$を展開したとき、$x^2$の係数を求めよ。
(5)xの整式$x^3-3x^2+ax-a$ (aは定数)がx-2で割り切れるとき、aの値を求めよ。
(6)$a\neq 0,b\neq 0$とする。 $(ab)^5\times (a^2)^{-3}\div (b^2)^2$を計算せよ。
(7)整数m,nについて、$m+n$が偶数であることは、mnが偶数であるための$\Box$である。
(選択肢)
①必要十分条件である
②必要条件であるが、十分条件ではない
③十分条件であるが、必要条件ではない
④必要条件でも十分条件でもない

大問2[1]:式と証明
次のような問題がある。
問1 すべての実数xに対して、不等式 $x^2+x+1\geqq 3x-2 …$(*)が成り立つことを証明せよ。
問2 $x\geqq 2$のとき、関数$ f(x)=\dfrac{x+2}{x}$ の最小値を求めよ。
太郎さんはこの問題の解答を次のように書いた。
問1 $(x^2+x+1)-(3x-2)=x^2-2x+3=(a-1)^2+2$ すべての実数xに対して、$(x-1)^2\geqq 0$であるから、$(a-1)^2+2\geqq 0$ よって、$x^2+x+1\geqq 3x-2$ は成り立つ。
問2 $x\geqq 2$のとき、$x\gt 0,\dfrac{2}{x}\gt 0$であるから、相加平均と相乗平均の大小関係より、$\dfrac{x+2}{x}\geqq 2\sqrt x\times \dfrac{2}{x}$ これより、$f(x)\geqq 2\sqrt2$ よって、f(x)の最小値は$2\sqrt2$である。
(1)太郎さんの問1の解答は正しいか、正しくないか答えよ(答えのみでよい)。また、xが実数のとき、問1の不等式(*)において、等号が成り立つか成り立たないか答えよ。さらに、その理由を「実数」「実数解」のいずれかの単語を用いて説明せよ。

大問2[2]:確率
1~4の数字が書かれたカードが1枚ずつ計4枚のカードが入っている袋がある。この袋の中から1枚のカードを無作為に取り出し、カードに書かれた数を記録して袋に戻すことを繰り返し4回行う。
(1)4回とも1が記録される確率を求めよ。
(2)4回とも2以上の数が記録される確率を求めよ。
(3)記録された4個の数の最小値が2である確率を求めよ。

大問3:図形と方程式
aは実数の定数とする。xy平面上に2点A(1,0)、B(-1,4)と円C:$x^2+y^2-2(a+1)x-4ay+5a^2+2a=0$があり、Cの中心をPとする。
(1)線分ABの長さと、直線ABの方程式を求めよ。
(2)$a=1$のとき、Pの座標を求めよ。また、このときのPと直線ABの距離を求めよ。
(3)aが実数全体を変化するとき、Pの軌跡を求めよ。
(4)aの値が$1\leqq a\leqq 3$の範囲を変化するとき、Cが通過する領域をDとする。点QがDを動くとき、三角形ABQの面積の最小値と最大値をそれぞれ求めよ。

大問4:三角関数
座標平面上に2点A(8,0)、B(0,8)と、原点を中心とする半径3の円がある。この円上に、x座標、y座標がともに正である点P($3\cos\theta,3\sin\theta)\left(0\lt\theta\lt \dfrac{\pi}{2}\right)$をとる。Pからx軸に下した垂線とx軸の交点をQ、Pからy軸に下した垂線とy軸の交点をRとし、△APQと△BPRの面積の和をSとする。
(1)線分AB、BRの長さをそれぞれ$\sin\theta、\cos\theta$を用いて表せ。
(2)Sを$\sin\theta、\cos\theta$を用いて表せ。
(3)$t=\sin\theta+\cos\theta$とする。$\theta$が$0\lt\theta\lt\dfrac{\pi}{2}$の範囲を変化するとき、tのとり得る値の範囲を求めよ。
(4)(i)θが$0\lt\theta\lt\dfrac{\pi}{2}$の範囲を変化するとき、Sの最大値を求めよ。
(ii)Sが最大となる$\theta$は2つあり、それらを$\theta_1,\theta_2\left(0\lt\theta_1\lt\theta_2\lt\dfrac{\pi}{2}\right)$とする。このとき、$\dfrac{\pi}{8}\lt \theta_1\lt\dfrac{\pi}{6}$であることを証明せよ。

大問5:微分法
3次関数 $f(x)=2x^3+3(1-a)x^2-6ax+8a$ がある。ただし、aは実数の定数である。
(1)a=2とする。
(i)f(x)の増減を調べて、f(x)の極大値と極小値を求めよ。
(ii)xの方程式$f(x)=0$の解で、$1\lt x\lt2$を満たすものの個数を求めよ。
(2)f(x)が$1\lt x\lt 2$において極値をもたないようなaの値の範囲を求めよ。
(3)xの方程式$f(x)=0$が$1\lt x\lt 2$の範囲に少なくとも1つの解をもつようなaの値の範囲を求めよ。

大問6:ベクトル
Oを原点とする座標空間に、3点A(1,2,2)、B(3,-4,0)、C(a,b,5)があり、$OA⊥OC$かつ$OB⊥OC$が成り立っている。
(1)$\vert OA\vert$、$\vert OB\vert$、内積$OA・OB、\cos\angle AOB$の値をそれぞれ求めよ。
(2)a,bの値を求めよ。
(3)四面体OABCの体積を求めよ。
(4)Oを中心とする半径rの球面Sがある。Sが3点A,B,Cを通る平面と交わってできる円の半径が2であるとき、rの値を求めよ。

大問7:数列
数列{$a_n$}$(n=1,2,3,…)$を$a_1=7, a_{n+1}=a_n+4(n=1,2,3,…)$によって定める。
(1)$a_4$の値を求めよ。また、数列{$a_n$}の一般項$a_n$を求めよ。
(2)$\displaystyle \sum_{k=1}^n a_k$を求めよ。
(3)数列{$b_n$}$(n=1,2,3,…)$を$b_1=3, b_{n+1}-b_n=a_n(n=1,2,3,…)$によって定める。数列{$b_n$}の一般項$b_n$を求めよ。
(4)数列{$c_n$}$(n=1,2,3,…)$を(3)の$b_n$を用いて、$c_1=\dfrac{1}{5}, c_{n+1}=b_n\times \dfrac{c_n}{(b_{n+1}-3)}(n=1,2,3,…)$によって定める。数列${c_n}$の一般項$c_n$を求めよ。また、$\displaystyle \sum_{k=1}^n c_k$を求めよ。
この動画を見る 

【数学】(一気見用)高2生必見!! 2019年度8月 第2回 K塾高2模試(※大問1(3)、大問5(*)式に訂正あり)

アイキャッチ画像
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2019年度8月 第2回 K塾高2模試 総集編
この動画を見る 

【数Ⅱ】高2生必見!! 2020年度 第2回 K塾高2模試 大問5_式と証明・複素数と方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
aを実数の定数とする。xの3次式 $P(x)=x^3+3x^2+3x+a$ があり、$P(-2)=0$を満たす。
(1)aの値を求めよ。
(2)方程式$P(x)=0$を解け。
(3)方程式$P(x)=0$の虚数解のうち、虚部が正であるものを$\alpha$、虚部が負であるもの を$\beta$と表す。また、方程式$P(x)=0$の実数解を$γ$と表す。さらに、$A=\alpha+1、B=\beta+1、 C=γ+1$とする。
(i)$A^2+B^2、A^3、B^3$の3つの値をそれぞれ求めよ。
(ii)nを2020以下の正の整数とする。$A^n+B^n+C^n=0$を満たすnの個数を求めよ。
この動画を見る 

【数学】2023年度 第2回 K塾高2模試 全問解説

アイキャッチ画像
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
第1問:小問集合
(1)$(3x-1)(9x^2+3x+1)$を展開せよ。
(2)$\displaystyle \frac{x-1}{1+\frac{1}{x+2}}$を簡単にせよ。
(3)2次関数$y=2x^2-x+1$の最小値を求めよ。
(4)iを虚数単位とする。$\displaystyle \frac{(2+i)^2}{i}$を$a+bi$(a,bは実数)の形で表せ。
(5)$AB=4,BC=\sqrt{7},CA=\sqrt{3}$である△ABCにおいて、cos∠BACの値と△ABCの面積を求めよ。
(6)a,a,b,b,c,cの6文字を1列に並べるとき、並べ方は全部で何通りか。このうち、a,aが隣り合わないような並べ方は何通りか。

第2問-i:2次不等式
aは正の定数とする。実数xについての2つの不等式 $ax^2+(2a-5)x-2a+1<0$・・・①、$│2x-3│≦3$・・・②がある。
(1)a=2のとき、①を解け。
(2)②を解け。
(3)②を満たすすべての実数xに対して、①が成り立つようなaの値の範囲を求めよ。

第2問-ii:図形と方程式
xy平面上に、2つの円$C₁:x^2+y^2-10x-a^2-4a+21=0、C2:x^2+y^2=5$がある。また、C₂上の点P(2,1)におけるC₂の 接線を$l$とする。ただし、aはa>-2を満たす定数とする。
(1)a=1のとき、C₁の中心の座標と半径を求めよ。
(2)$l$の方程式を求めよ。
(3)C₁と$l$が接するようなaの値を求めよ。また、このとき のC1と$l$の接点をQとするとき、線分PQの長さを求めよ。

第3問:複素数と方程式
a,bを実数の定数とする。xの3次式$ f(x)=x^3+(a+3)x^2+(3a+b)x+3b$ と、3次方程式 $f(x)=0$・・・(*)がある。
(1)f(-3)を求めよ。
(2)a=-1かつb=1のとき、(*)を解け。
(3)(*)が異なる2つの虚数解をもつためのa,bの条件を求めよ。
(4)a,bが(3)で求めた条件を満たすとし、(*)の異なる2つの虚数解をα,βとする。このとき、$α^2,β^2$がともに(*)の解となるようなa,bの値の組(a,b)をすべて求めよ。

第4問:確率
5枚のカード1,1,2,2,3が入った袋が1つあり、次の操作(I)を考える。
操作(I): 袋から2枚のカードを同時に取り出し、取り出した2枚のカードに書かれた数の和をXとし、取り出した2枚のカードを袋に戻す。
(1)操作(I)を1回行う。
(i)X=2となる確率を求めよ。
(ii)X=4となる確率を求めよ。
さらに、1枚の硬貨を用意し、操作(I)で定まるXの値に対して、次の操作(II)を考える。
操作(II):1枚の硬貨を投げ、表が出たらY=X+1とし、裏が出たらY=Xとする。
操作(I), (II)を(I), (II)の順に1回ずつ行うことを操作Tとする。
(2)操作Tを1回行う。
(i)Y=4となる確率を求めよ。
(ii)Yの期待値を求めよ。
(3)操作Tを3回繰り返すとき、3回のYの値の合計が15になる確率を求めよ。

第5問:三角関数
aを実数の定数とする。θの方程式$cos2θ+2(5a-1)sinθ-12a^2+6a-1=0$・・・(*)がある
(1)cos2θをsinθを用いて表せ。
(2)a=0とする。0≦θ<2πにおいて、(*)を解け。
(3)0≦θ<2πにおいて、(*)が異なる4個の解をもつとする。
(i)aのとり得る値の範囲を求めよ。
(ii)0≦θ<2πにおける(*)の4個の解を、小さい順にθ₁,θ₂,θ₃,θ₄とする。(θ₂-θ₁)+(θ₄-θ₃)=πとなるようなaの値を求めよ。

第6問:数列
nは自然数。等差数列{a_n}があり、a₁+a₂=8,a₄+a₅=20である。また、公比が実数である等比数列{b_n}があり、
b₁+b₂=4, b₄+b₅=108である。
(1)数列{a_n}の一般項を求めよ。また、数列{a_n}の初項から第n項までの和S_nを求めよ。
(2)数列{b_n}の一般項を求めよ。
(3)数列{c_n}は、左から順に次のような項が並べられた数列である。 b₁がa₁個、b₂がa₂個、b₃がa₃個、...、b_nがa_n個、... すなわち、{c}: b₁,...,b₁, b₂,...,b₂, b₃,..,b₃,...,b_n,...,b_n,...
(i)C₂₀₂₃の値を求めよ。ただし、結果は2¹⁰⁰のように指数表示のままでよい。
(ii)$\displaystyle \sum_{k=1}^{2023}c_k$の値を求めよ。ただし、結果は$2^{100}$のように指数表示のままでよい。
この動画を見る 

【数C】高2生必見!! 2019年度8月 第2回 K塾高2模試 大問7_ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#全統模試(河合塾)#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角形ABCがあり、辺ABを1:2に内分する点をD、辺BCを1:3に内分する点をE、三 角形ABCの重心をGとする。
(1)AD, AE, AGをそれぞれAB, ACを用いて表せ。
(2)GF=tAB(tは実数)と表される点Fがある。
(i)AFをt,AB,ACを用いて表せ。
(ii)さらに、FがDF=uDE(uは実数)を満たすとき、t,uの値を求めよ。
(3)AB=√3,AB・AC=-1,AC=√7とし、Gから直線ABに下した垂線と直線ABとの交点をH とする。 (i)AH=kAB(kは実数)とおくとき、kの値を求めよ。
(ii)Fが(2)(ii)の点であるとき、4点D,F,G,Hを頂点とする四角形の面積を求めよ。
この動画を見る 
PAGE TOP