慶応義塾中等部2024年入試問題④「規則性」 - 質問解決D.B.(データベース)

慶応義塾中等部2024年入試問題④「規則性」

問題文全文(内容文):
【慶応義塾中等部】
ある規則に従って、以下のように分数を並べました。
$\displaystyle \frac{1}{2},\displaystyle \frac{1}{4},\displaystyle \frac{3}{4},\displaystyle \frac{1}{8},\displaystyle \frac{3}{8},\displaystyle \frac{5}{8},\displaystyle \frac{7}{8},\displaystyle \frac{1}{16},…$

次の□に適当な数を入れなさい。
(1)$\displaystyle \frac{31}{64}$ははじめから数えて□番日の分数です。

(2)はじめから数えて50番目から60番目までの分数をすべて加えると$㋐-\displaystyle \frac{㋑}{㋒}$になります。
単元: #算数(中学受験)#計算と数の性質#過去問解説(学校別)#規則性(周期算・方陣算・数列・日暦算・N進法)#慶應義塾中等部
指導講師: 重吉
問題文全文(内容文):
【慶応義塾中等部】
ある規則に従って、以下のように分数を並べました。
$\displaystyle \frac{1}{2},\displaystyle \frac{1}{4},\displaystyle \frac{3}{4},\displaystyle \frac{1}{8},\displaystyle \frac{3}{8},\displaystyle \frac{5}{8},\displaystyle \frac{7}{8},\displaystyle \frac{1}{16},…$

次の□に適当な数を入れなさい。
(1)$\displaystyle \frac{31}{64}$ははじめから数えて□番日の分数です。

(2)はじめから数えて50番目から60番目までの分数をすべて加えると$㋐-\displaystyle \frac{㋑}{㋒}$になります。
投稿日:2024.04.17

<関連動画>

なぜ部屋番号404は見つからないのか?

アイキャッチ画像
単元: #計算と数の性質#数の性質その他
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
部屋番号404は見つからない理由に関して解説していきます。
この動画を見る 

【受験算数】下図のような道路があります。PからQまで行く最短の道順を考えます。(1) 全部で何通りありますか。(2) PからAを通ってQまで行く道順は何通りありますか。

アイキャッチ画像
単元: #算数(中学受験)#場合の数#場合の数
教材: #SPX#5年算数D-支援#中学受験教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
下図のような道路があります。PからQまで行く最短の道順を考えます。
(1) 全部で何通りありますか。
(2) PからAを通ってQまで行く道順は何通りありますか。
(3) AとBの間が通行止めになりました。このとき、PからQまで行く道順は何通りありますか。
この動画を見る 

【小3 算数】  小3-23  3けた×1けた

アイキャッチ画像
単元: #算数(中学受験)#計算と数の性質#いろいろな計算
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$\begin{array}{r}
213 \\[-3pt]
\underline{\times\phantom{0}3}\\[-3pt]
\\[-3pt]
\end{array}$

②$\begin{array}{r}
315 \\[-3pt]
\underline{\times\phantom{0}4}\\[-3pt]
\\[-3pt]
\end{array}$

③$\begin{array}{r}
428 \\[-3pt]
\underline{\times\phantom{0}3}\\[-3pt]
\\[-3pt]
\end{array}$

④$\begin{array}{r}
506 \\[-3pt]
\underline{\times\phantom{0}8}\\[-3pt]
\\[-3pt]
\end{array}$

⑤$\begin{array}{r}
310 \\[-3pt]
\underline{\times\phantom{0}9}\\[-3pt]
\\[-3pt]
\end{array}$

⑥$\begin{array}{r}
182 \\[-3pt]
\underline{\times\phantom{0}6}\\[-3pt]
\\[-3pt]
\end{array}$

⑦$\begin{array}{r}
175 \\[-3pt]
\underline{\times\phantom{0}8}\\[-3pt]
\\[-3pt]
\end{array}$

⑧$\begin{array}{r}
309 \\[-3pt]
\underline{\times\phantom{0}4}\\[-3pt]
\\[-3pt]
\end{array}$
この動画を見る 

福田の数学〜京都大学2023年理系第6問〜チェビシェフの多項式と論証(PART1)

アイキャッチ画像
単元: #式の計算(単項式・多項式・式の四則計算)#数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#その他#推理と論証#推理と論証#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{6}$ pを3以上の素数とする。また、θを実数とする。
(1)$\cos3\theta$と$\cos4\theta$を$\cos\theta$の式として表せ。
(2)$\cos\theta$=$\frac{1}{p}$のとき、θ=$\frac{m}{n}$・$\pi$となるような正の整数m,nが存在するか否かを理由をつけて判定せよ。

チェビシェフの多項式
$\cos n\theta$=$T_n$($\cos\theta$)を満たすn次の多項式$T_n(x)$が存在し、その係数はすべて整数であり、最高次の係数が$2^{n-1}$である。
これが、すべての自然数nについて成り立つことを数学的帰納法で証明せよ。

2023京都大学理系過去問
この動画を見る 

【算数練習】178(”大人”は頭の体操)

アイキャッチ画像
単元: #算数(中学受験)#平面図形#角度と面積#図形の移動#平面図形その他
指導講師: 算数・数学ちゃんねる
問題文全文(内容文):
円の面積は?
※●は円の中心
※円周率は3.14
※図は動画内参照
この動画を見る 
PAGE TOP