4S数学 - 質問解決D.B.(データベース)

4S数学

指数対数 数Ⅱ 対数関数グラフ、方程式、不等式【ゆう☆たろうがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#指数関数と対数関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数のグラフをかけ。
(1)$y=log_2{(x-2)}$
(2)$y=log_{\frac{1}{3}}{x}+1$
(3)$y=log_{10}{(-x)}$

次の数の大小を不当号を用いて表せ。
(1)$log_{0.3}{4}$, $log_2{4}$, $log_3{4}$
(2)$log_{0.3}{0.5}$, $log_2{0.5}$, $log_3{0.5}$
(3)$log_4{9}$, $log_9{25}$, $1.5$

次の方程式を解け
(1)$log_{10}{(x+2)(x+5)}=1$
(2)$log_{\frac{1}{3}}{(9+x-x^2)}=-1$

次の方程式を解け
(1)$log_2{x}+log_2{(x+3)}=2$
(2)$log_4{(2x+3)}+log_4{(4x+1)}=2log_4{5}$
(3)$log_2{(3-x)}=log_4{(2x+18)}$
この動画を見る 

確率分布と統計的推測 数B 二項分布【ユースケ・マセマティックがていねいに解説】

アイキャッチ画像
単元: #確率分布と統計的な推測#確率分布#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#確率分布と統計的推測#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
ある植物の種子の発芽率は80%であるという。
この植物の種子を900個まいたとき、次の問いに答えよ。
(1) 750個以上の種子が発芽する確率を求めよ。
(2) 900 個のうちn個以上の種子が発芽する確率が 80%以上となるようなnの最大値を求めよ。
この動画を見る 

確率分布と統計的推測 数B 正規分布6【ユースケ・マセマティックがていねいに解説】

アイキャッチ画像
単元: #確率分布と統計的な推測#確率分布#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#確率分布と統計的推測#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
ある2つの試験の結果は、平均点がそれぞれ57.6点、81.8点、標準偏差がそれぞれ10.3点、 5.7点であった。
Aは前者の試験を受けて75点、Bは後者の試験を受けて88点であった。
どちらの試験を受けても、受験者全体としては優劣がないものとすると、 AとBはどちらが優れていると考えられるか。
ただし、得点は正規分布に従うものとする。
この動画を見る 

確率分布と統計的推測 数B 正規分布5【ユースケ・マセマティックがていねいに解説】

アイキャッチ画像
単元: #確率分布と統計的な推測#確率分布#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#確率分布と統計的推測#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
ある試験での成績の結果は、平均71点,標準偏差8点であった。 得点の分布は正規分布に従うものとするとき、次の問いに答えよ。
(1)63点から87点のものが450人いた。受験者の総数は約何人か。
(2) (1) のとき、合格点を55点とすると、約何人が合格することになるか。
この動画を見る 

確率分布と統計的推測 数B 仮説検定【ゆう☆たろうがていねいに解説】

アイキャッチ画像
単元: #確率分布と統計的な推測#統計的な推測#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#確率分布と統計的推測#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
テニス選手A, Bの年間の対戦成績は、Aの23勝13敗であった。両選手の力に差があると判断してよいか。有意水準5%で検定せよ。

ある政党の5年前の支持率は20%であった。無作為に900人を選んで調査したところ、151人が支持しているという結果であった。支持率は5年前から下がったと判断してよいか。有意水準1%で検定せよ。

ある政党の5年前の支持率は20%であった。無作為に900人を選んで調査したところ、151人が支持しているという結果であった。支持率は5年前から下 がったと判断してよいか。有意水準1%で検定せよ。
この動画を見る 

確率分布と統計的推測 数B 正規分布4【ユースケ・マセマティックがていねいに解説】

アイキャッチ画像
単元: #確率分布と統計的な推測#確率分布#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#確率分布と統計的推測#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
1000人の生徒に数学のテストをおこなったところ、その成績は平均48点、標準偏差15点であった。 成績が正規分布に従うものとするとき、次の問いに答えよ。
(1) ある生徒の得点が78点以上である確率はいくらか?
(2)78点以上の生徒は約何人いると考えられるか。
(3)30点以下の生徒は約何人いると考えられるか。
この動画を見る 

確率分布と統計的推測 数B 正規分布3【ユースケ・マセマティックがていねいに解説】

アイキャッチ画像
単元: #確率分布と統計的な推測#確率分布#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#確率分布と統計的推測#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
ある県における高校2年生の男子の身長が、平均170.0cm、標準偏差値5.2cmの正規分布に従うものとする。
(1) 身長が 165 cm 以上の生徒は、約何%いるか。整数値で答えよ
(2) 身長の高い方から10%の中に入るのは、何cm以上の生徒か。最も小さい整数値で答えよ。
この動画を見る 

確率分布と統計的推測 数B 正規分布2【ユースケ・マセマティックがていねいに解説】

アイキャッチ画像
単元: #確率分布と統計的な推測#確率分布#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#確率分布と統計的推測#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
正規分布N(m. σ²) に従う確率変数Xについて、Xの取る値を
m-1.5σ, m-0.5σ, m+0.5σ, m+1.5σ
によって、5つの階級に分けると、 各階級に何%ずつ含まれるか。
この動画を見る 

確率分布と統計的推測 数B 正規分布1【ユースケ・マセマティックがていねいに解説】

アイキャッチ画像
単元: #確率分布と統計的な推測#確率分布#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#確率分布と統計的推測#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
正規分布 N(10,5²)に従う確率変数Xについて、次の等式が成り立つように、
定数の値を定めよ。
(1) P(10≤ X ≤a)=0.4772
(2) P(X≥a)=0.0082
(3) P(|X-10|≤a)=0.8664
(4) P(|X-10|/≥a)=0.0278

正規分布N(m、σ²)において、変数Xが|X-m|≥kσの範囲に入る確率が、
次の値になるように、正の定数の値を定めよ。
(1) 0.006
(2) 0.016
(3) 0.242
この動画を見る 

確率分布と統計的推測 数B 確率密度関数【ユースケ・マセマティックがていねいに解説】

アイキャッチ画像
単元: #確率分布と統計的な推測#確率分布#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#確率分布と統計的推測#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
確率変数Xのとる値の範囲が-1≤X≤1で、その確率密度関数(x)が f(x)=1-|x| (-1≤x≤1)で与えられるとき、次の確率を求めよ。
(1) P(0≤ X ≤0.25)
(2) P(|X| ≤0.25)
(3) P(-0.5≤ X ≤0.3)

確率変数Xのとる値の範囲が0≤x≤10で、その確率密度関数がkを定数として
f(x)=kx(10-x) (0≤x≤10)で与えられているとする。
このとき、kの値は□であり、確率 P(3≤x≤7) は□となる。
この動画を見る 

数列 数B 部分分数分解の応用【TAKAHASHI名人がていねいに解説】

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の和Sを求めよ
(1)$S=\dfrac{1}{1・4}+\dfrac{1}{4・7}+\dfrac{1}{7・10}+ ‥ ‥‥+\dfrac{1}{(3n-2)(3n+1)}$

(2)$S=\dfrac{1}{1・3}+\dfrac{1}{2・4}+\dfrac{1}{3・5}+ ‥ ‥‥+\dfrac{1}{n(n+2)}$


和を求めよ
$\displaystyle \sum_{k=1}^n \dfrac{1}{\sqrt{k+2}+\sqrt{k+3} }$

次の数列の初項から第n項までの和を求めよ
(1)$1$,$\dfrac{1}{1+2}$,$\dfrac{1}{1+2+3}$,‥ ‥‥

(2)$\dfrac{3}{1^2}$,$\dfrac{5}{1^2+2^2}$,$\dfrac{7}{1^2+2^2+3^2}$‥ ‥‥

(3)$\dfrac{1}{1×2×3}$,$\dfrac{1}{2×3×4}$,$\dfrac{1}{3×4×5}$‥ ‥‥

この動画を見る 

数列 数B Σ公式の応用【TAKAHASHI名人がていねいに解説】

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の和を求めよ。
(1)$\displaystyle \sum_{m=1}^n \displaystyle \sum_{k=1}^m (12k-6)$
(2)$\displaystyle \sum_{m=1}^n \displaystyle \sum_{l=1}^m \displaystyle \sum_{k=1}^l k$

次の数列の初項から第n項までの和を求めよ。
(1) $1^2$+$1・2+2^2$、$2^2+2・3+3^2$、$3^3+3・4+4^2$、…
(2) $1^2$、$1^2+3^2$、$1^2+3^2+5^2$、$1^2+3^2+5^2+7^2$、…

次の数列の和を求めよ。
(1) $1・n$, $3・(nー1)$,$5・(nー2)$,・・・・,$(2n -3) • 2$, $(2n-1)•1$
(2) $1^2・n$,$2^2・(nー1)$, $3^2・(nー2)$,・・・,$(n-1)^2・2$,$n^2・1$

次の数列の一般項を求めよ。また、初項から第n項までの和を求めよ。
0,4, 18,48,100,180,294,…
この動画を見る 

微分法と積分法 数Ⅱ 微分と面積4【マコちゃんねるがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
放物線y=x²上の点で,点(6,3)から最短距離にある点の座標と,その距離を求めよ。
この動画を見る 

微分法と積分法 数Ⅱ 微分と面積3【マコちゃんねるがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
表面積が12πcm²である直円柱を考える。
(1)上面と下面の円の半径をxcm、高さをhcmとするとき,hをxで表せ。
(2)体積を最大にするxとhの値を求めよ。また,そのときの体積を求めよ。
この動画を見る 

微分法と積分法 数Ⅱ 微分と面積2【マコちゃんねるがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
辺の長さが6cmと16cmの長方形のボール紙がある。図の斜線部分を切り取り,点線に沿って折り曲げてふたつきの直方体の箱を作る。この箱の最大容積を求めよ。
この動画を見る 

微分法と積分法 数Ⅱ 微分と面積1【マコちゃんねるがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
Oを原点とする。放物線の一部y=3-x²(y≧0)をx軸に平行な直線が異なる2点A,Bで交わるとき,三角形OABの面積の最大値とその時の点A,Bの座標を求めよ。
この動画を見る 

微分法と積分法 数Ⅱ 極大極小の条件2【マコちゃんねるがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
関数f(x)=x⁴+4x³+2ax²が極大値と極小値を持つように,定数aの値の範囲を定めよ。
この動画を見る 

微分法と積分法 数Ⅱ 絶対値を含む3次関数【マコちゃんねるがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数のグラフをかけ。
(1)y=|x³+3x²|
(2)y=x³-3|x|
この動画を見る 

微分法と積分法 数Ⅱ 極値を持つ条件1【マコちゃんねるがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件に適するように、定数aの値の範囲を、それぞれ定めよ。
(1)関数f(x)=1/3x³+ax²+(a+2)x+1が極値をもつ。
(2)関数g(x)=x³+ax²-3ax+2が極値をもたない。
この動画を見る 

微分法と積分法 数Ⅱ 単調増加の条件【マコちゃんねるがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
xの関数y=x³+(p+1)x²+p²x+1が常に単調増加するように、定数pの値の範囲を定めよ。
この動画を見る 

確率 数A このゲームは得?損?【烈’s study!がていねいに解説】

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#場合の数と確率#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
白玉2個、黒玉5個、赤玉3個が入っている袋から玉を1個取り出し、白玉が出たら1000円、黒玉が出たら100円もらえ、赤玉が出たら800円を支払うゲームがある。ゲームの参加料が0円であるとき、このゲームに参加することは得であるといえるか。
この動画を見る 

指数対数 数Ⅱ 指数関数グラフ、方程式【ゆう☆たろうがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#指数関数と対数関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数のグラフをかけ


(1)$y=2^{x+1}$
(2)$y=(\dfrac{1}{5})^{x-1}$
(3)$y=4・2^x$
(4)$y=3^x-1$
次の数の大小を不等号を用いて表せ
(1)$2^\frac{1}{2}$ $3^\frac{1}{3}$ $7^\frac{1}{6}$
(2)$2^{30}$ $3^{20}$ $10^{10}$
次の方程式,不等式を解け
(1)$4^x+2^{x+1}-24=0$
(2)$10^{2x}+10^x=2$
(3)$9^{x+1}-28・3^x+3=0$
(4)$16^x-3・4^x-4≧0$
(5)$(\dfrac{1}{9})^x-\dfrac{1}{3^x}-6<0$
(6)$(\dfrac{1}{4})^{x-1}-9・(\dfrac{1}{2})^x+2>0$
次の関数の最大値,最小値があれば,それを求めよまた,そのときのxの値を求めよ
(1)$y=2^{2x}-4・2^x+1$
(2)$y=-4^x+2^x+2$$(-1≦x≦2)$
この動画を見る 

確率 4S数学問題集数A 145 コインを投げたときの得点の期待値【烈’s study!がていねいに解説】

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#場合の数と確率#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
3枚の硬貨を同時に投げて、表が3枚出たら100点、2枚出たら50点を獲得し、1枚のときは60点を、1枚も出ていないときは70点を失うものとする。1回硬貨を投げるときの得点の期待値を求めよ。
この動画を見る 

確率 4S数学問題集数A 144 さいころ2個の目の積の期待値【烈’s study!がていねいに解説】

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#場合の数と確率#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
2個のさいころを同時に投げるとき、2個の目の積の期待値を求めよ。
この動画を見る 

微分法と積分法 数Ⅱ 極値の利用2【マコちゃんねるがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数の極値を求めよ。またそのグラフをかけ。
(1)y=3/2x⁴+2x³-6x+5
(2)y=x⁴+4x
(3)y=-3x⁴+16x³-18x²
(4)y=x⁴-6x²-8x-3
この動画を見る 

微分法と積分法 数Ⅱ 極値の利用1【マコちゃんねるがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
関数f(x)=x³+3x²-3x+4について、f'(x)=3(x²+2x-1)である。
(1)f(x)をx²+2x-1で割った時の商と余りを求めよ。
(2)f(x)の極値を求めよ。
この動画を見る 

複素数と方程式 数Ⅱ 解と係数の利用【ホーン・フィールドがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#複素数と方程式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
2次方程式$(x+1)(x-1)+(x-1)(x-2)+(x-2)(x+1)=0$
の2つの解をα、βとするとき、次の式の値を求めよ。
$\dfrac{1}{(α-2)(β-2)}+\dfrac{1}{(α-1)(β-1)}+\dfrac{1}{(α+1)(β+1)}$

解の公式を用いて、次の2次式を因数分解せよ。
(1) $x^2-xy-x+2y-2$
(2) $2x^2-5xy+2y^2+x+y-1$

次の連立方程式を解け。
(1) $x+y=3$
$x+y+xy=-7$
(2) $x^2+y^2=13$
$xy=6$
この動画を見る 

複素数と方程式 数Ⅱ 複素数の計算利用【ホーン・フィールドがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#複素数と方程式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の式を計算せよ。
(1)$(\dfrac{3-2i}{2+3i})^2$
(2)$(\dfrac{-1+\sqrt{3}i}{2})^3$
(3)$(2+i)^3+(2-i)^3$
(4)$(\dfrac{1}{i}-i)(\dfrac{2}{i}+i)i^3$
(5)$\dfrac{2+3i}{3-2i}+\dfrac{2-3i}{3+2i}$
(6)$\dfrac{1}{i}+1-i+i^2-i^3+i^4$

$x=\dfrac{-1+\sqrt{5}i}{2}$,$y=\dfrac{-1-\sqrt{5}i}{2}$であるとき、次の式の値を求めよ。
(1)$x+y$
(2)$xy$
(3)$x^2+y^2$
(4)$x^3+y^3+x^2y+xy^2$

次の等式を満たす実数x,yの値を求めよ。
(1)$(2i+3)x+(2-3i)y=5-i$
(2)$(1-2i)(x+yi)=2+6i$
(3)$(1+xi)^2+(x+i)^2=0$
(4)$\dfrac{1}{2+i}+\dfrac{1}{x+yi}=\dfrac{1}{2}$
この動画を見る 

微分法と積分法 数Ⅱ 極値の利用5【マコちゃんねるがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
f(x)は3次関数で、x=1で極大値6をとり、x=2で極小値5をとる。f(x)を求めよ。
この動画を見る 

数と証明 数Ⅱ 分数式の計算【さこすけ’s サイエンスがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#式と証明#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の式を計算せよ。

(1) $\dfrac{2}{1+a}+\dfrac{4}{1+a^2}+\dfrac{2}{1-a}+\dfrac{8}{1+a^4}$

(2) $\dfrac{ca}{(a-b)(b-c)}+\dfrac{ab}{(b-c)(c-a)}+\dfrac{bc}{(c-a)(a-b)}$

次の式を計算せよ。

(1) $\dfrac{x+2}{x}+\dfrac{x+3}{x+1}+\dfrac{x-5}{x-3}+\dfrac{x-6}{x-4}$

(2)$\dfrac{2}{(a-1)(a+1)}+\dfrac{2}{(a+1)(a+3)}+\dfrac{2}{(a+3)(a+5)}$

$x+\dfrac{1}{x}=4$のとき,

$x^2+\dfrac{1}{x^2}$

$x^3+\dfrac{1}{x^3}$

の値を求めよ。
この動画を見る 
PAGE TOP