複素数と方程式 - 質問解決D.B.(データベース)

複素数と方程式

複素数と方程式 数Ⅱ 解と係数の利用【ホーン・フィールドがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#複素数と方程式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
2次方程式$(x+1)(x-1)+(x-1)(x-2)+(x-2)(x+1)=0$
の2つの解をα、βとするとき、次の式の値を求めよ。
$\dfrac{1}{(α-2)(β-2)}+\dfrac{1}{(α-1)(β-1)}+\dfrac{1}{(α+1)(β+1)}$

解の公式を用いて、次の2次式を因数分解せよ。
(1) $x^2-xy-x+2y-2$
(2) $2x^2-5xy+2y^2+x+y-1$

次の連立方程式を解け。
(1) $x+y=3$
$x+y+xy=-7$
(2) $x^2+y^2=13$
$xy=6$
この動画を見る 

複素数と方程式 数Ⅱ 複素数の計算利用【ホーン・フィールドがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#複素数と方程式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の式を計算せよ。
(1)$(\dfrac{3-2i}{2+3i})^2$
(2)$(\dfrac{-1+\sqrt{3}i}{2})^3$
(3)$(2+i)^3+(2-i)^3$
(4)$(\dfrac{1}{i}-i)(\dfrac{2}{i}+i)i^3$
(5)$\dfrac{2+3i}{3-2i}+\dfrac{2-3i}{3+2i}$
(6)$\dfrac{1}{i}+1-i+i^2-i^3+i^4$

$x=\dfrac{-1+\sqrt{5}i}{2}$,$y=\dfrac{-1-\sqrt{5}i}{2}$であるとき、次の式の値を求めよ。
(1)$x+y$
(2)$xy$
(3)$x^2+y^2$
(4)$x^3+y^3+x^2y+xy^2$

次の等式を満たす実数x,yの値を求めよ。
(1)$(2i+3)x+(2-3i)y=5-i$
(2)$(1-2i)(x+yi)=2+6i$
(3)$(1+xi)^2+(x+i)^2=0$
(4)$\dfrac{1}{2+i}+\dfrac{1}{x+yi}=\dfrac{1}{2}$
この動画を見る 

複素数と方程式 数Ⅱ 2次方程式の解と判別式【ホーン・フィールドがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#複素数と方程式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の2次方程式を解け。
(1)$3(x+1)^2-2(x+1)-1=0$
(2)$2(x-1)^2-4(x-1)+3=0$
(3)$x^2-\sqrt{2} x+\sqrt{2} -1=0$
(4)$x^2-2x+9+2\sqrt{15}=0$

kは定数とする。次の方程式の解の種類を判別せよ。
(1)$kx^2-3x+1=0$
(2)$(k^2-1) x^2+2(k-1)+2=0$
この動画を見る 

複素数と方程式 数Ⅱ2次方程式の解と判別式【ホーン・フィールドがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#複素数と方程式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
2つの複素数a+biと2-3iの和が純虚数、積が実数となるように、実数a,bの値を求めよ。

虚数α,βの和、積がともに実数ならば、αとβは互いに共役であることを示せ。
この動画を見る 

複素数と方程式 数Ⅱ2次方程式の解と判別式2【ホーン・フィールドがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#複素数と方程式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
2つの2次方程式x²+mx+m=0, x²+mx+1=0がともに虚数解をもつとき、定数mの値の範囲を定めよ。

2つの2次方程式x²+2mx-2m=0, x²+(m-1)x+m²=0が次の条件を満たすとき、定数mの値の範囲を定めよ。
(1)少なくとも一方が実数解をもつ
(2)一方だけが実数解をもつ
この動画を見る 

複素数と方程式 数Ⅱ 2次方程式の解と判別式【ホーン・フィールドがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#複素数と方程式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
2つの2次方程式x²+mx+m=0, x²+mx+1=0がともに虚数解をもつとき、定数mの値の範囲を定めよ。

2つの2次方程式x²+2mx-2m=0, x²+(m-1)x+m²=0が次の条件を満たすとき、定数mの値の範囲を定めよ。
(1)少なくとも一方が実数解をもつ
(2)一方だけが実数解をもつ
この動画を見る 

複素数と方程式 数Ⅱ複素数【ホーン・フィールドがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#複素数と方程式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の式を計算せよ。
(1){(3-2i)/(2+3i)}²
(2){(-1+√3 i)/2}³
(3)(2+i)³+(2-i)³
(4)(1/i-i)(2/i+i)i³
(5) (2+3i)/(3-2i) +(2-3i)/(3+2i)
(6)1/i+1-i+i²-i³+i⁴

x¬=(-1+√5 i)/2,y=(-1-√5 i )/2 であるとき、次の式の値を求めよ。
(1)x+y
(2)xy
(3)x²+y²
(4)x³+y³+x²y+xy²

次の等式を満たす実数x,yの値を求めよ。
(1)(2i+3)x+(2-3i)y=5-i
(2)(1-2i)(x+yi)=2+6i
(3)(1+xi)²+(x+i)²=0
(4)1/(2+i) + 1/(x+yi) =1/2
この動画を見る 
PAGE TOP