確率分布と統計的推測 - 質問解決D.B.(データベース)

確率分布と統計的推測

確率分布と統計的推測 数B 二項分布【ユースケ・マセマティックがていねいに解説】

アイキャッチ画像
単元: #確率分布と統計的な推測#確率分布#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#確率分布と統計的推測#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
ある植物の種子の発芽率は80%であるという。
この植物の種子を900個まいたとき、次の問いに答えよ。
(1) 750個以上の種子が発芽する確率を求めよ。
(2) 900 個のうちn個以上の種子が発芽する確率が 80%以上となるようなnの最大値を求めよ。
この動画を見る 

確率分布と統計的推測 数B 正規分布6【ユースケ・マセマティックがていねいに解説】

アイキャッチ画像
単元: #確率分布と統計的な推測#確率分布#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#確率分布と統計的推測#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
ある2つの試験の結果は、平均点がそれぞれ57.6点、81.8点、標準偏差がそれぞれ10.3点、 5.7点であった。
Aは前者の試験を受けて75点、Bは後者の試験を受けて88点であった。
どちらの試験を受けても、受験者全体としては優劣がないものとすると、 AとBはどちらが優れていると考えられるか。
ただし、得点は正規分布に従うものとする。
この動画を見る 

確率分布と統計的推測 数B 正規分布5【ユースケ・マセマティックがていねいに解説】

アイキャッチ画像
単元: #確率分布と統計的な推測#確率分布#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#確率分布と統計的推測#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
ある試験での成績の結果は、平均71点,標準偏差8点であった。 得点の分布は正規分布に従うものとするとき、次の問いに答えよ。
(1)63点から87点のものが450人いた。受験者の総数は約何人か。
(2) (1) のとき、合格点を55点とすると、約何人が合格することになるか。
この動画を見る 

確率分布と統計的推測 数B 仮説検定【ゆう☆たろうがていねいに解説】

アイキャッチ画像
単元: #確率分布と統計的な推測#統計的な推測#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#確率分布と統計的推測#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
テニス選手A, Bの年間の対戦成績は、Aの23勝13敗であった。両選手の力に差があると判断してよいか。有意水準5%で検定せよ。

ある政党の5年前の支持率は20%であった。無作為に900人を選んで調査したところ、151人が支持しているという結果であった。支持率は5年前から下がったと判断してよいか。有意水準1%で検定せよ。

ある政党の5年前の支持率は20%であった。無作為に900人を選んで調査したところ、151人が支持しているという結果であった。支持率は5年前から下 がったと判断してよいか。有意水準1%で検定せよ。
この動画を見る 

確率分布と統計的推測 数B 正規分布4【ユースケ・マセマティックがていねいに解説】

アイキャッチ画像
単元: #確率分布と統計的な推測#確率分布#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#確率分布と統計的推測#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
1000人の生徒に数学のテストをおこなったところ、その成績は平均48点、標準偏差15点であった。 成績が正規分布に従うものとするとき、次の問いに答えよ。
(1) ある生徒の得点が78点以上である確率はいくらか?
(2)78点以上の生徒は約何人いると考えられるか。
(3)30点以下の生徒は約何人いると考えられるか。
この動画を見る 

確率分布と統計的推測 数B 正規分布3【ユースケ・マセマティックがていねいに解説】

アイキャッチ画像
単元: #確率分布と統計的な推測#確率分布#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#確率分布と統計的推測#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
ある県における高校2年生の男子の身長が、平均170.0cm、標準偏差値5.2cmの正規分布に従うものとする。
(1) 身長が 165 cm 以上の生徒は、約何%いるか。整数値で答えよ
(2) 身長の高い方から10%の中に入るのは、何cm以上の生徒か。最も小さい整数値で答えよ。
この動画を見る 

確率分布と統計的推測 数B 正規分布2【ユースケ・マセマティックがていねいに解説】

アイキャッチ画像
単元: #確率分布と統計的な推測#確率分布#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#確率分布と統計的推測#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
正規分布N(m. σ²) に従う確率変数Xについて、Xの取る値を
m-1.5σ, m-0.5σ, m+0.5σ, m+1.5σ
によって、5つの階級に分けると、 各階級に何%ずつ含まれるか。
この動画を見る 

確率分布と統計的推測 数B 正規分布1【ユースケ・マセマティックがていねいに解説】

アイキャッチ画像
単元: #確率分布と統計的な推測#確率分布#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#確率分布と統計的推測#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
正規分布 N(10,5²)に従う確率変数Xについて、次の等式が成り立つように、
定数の値を定めよ。
(1) P(10≤ X ≤a)=0.4772
(2) P(X≥a)=0.0082
(3) P(|X-10|≤a)=0.8664
(4) P(|X-10|/≥a)=0.0278

正規分布N(m、σ²)において、変数Xが|X-m|≥kσの範囲に入る確率が、
次の値になるように、正の定数の値を定めよ。
(1) 0.006
(2) 0.016
(3) 0.242
この動画を見る 

確率分布と統計的推測 数B 確率密度関数【ユースケ・マセマティックがていねいに解説】

アイキャッチ画像
単元: #確率分布と統計的な推測#確率分布#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#確率分布と統計的推測#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
確率変数Xのとる値の範囲が-1≤X≤1で、その確率密度関数(x)が f(x)=1-|x| (-1≤x≤1)で与えられるとき、次の確率を求めよ。
(1) P(0≤ X ≤0.25)
(2) P(|X| ≤0.25)
(3) P(-0.5≤ X ≤0.3)

確率変数Xのとる値の範囲が0≤x≤10で、その確率密度関数がkを定数として
f(x)=kx(10-x) (0≤x≤10)で与えられているとする。
このとき、kの値は□であり、確率 P(3≤x≤7) は□となる。
この動画を見る 

【FULL】定期テスト直前対策!確率、確率分布と統計的な推測解説動画フルパック流し【数A,数B】

アイキャッチ画像
単元: #数A#場合の数と確率#確率#確率分布と統計的な推測#確率分布#統計的な推測#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#場合の数と確率#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#確率分布と統計的推測#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
確率、確率分布と統計的な推測のまとめ動画です。
確率の基本から信頼度区間の問題まで
見たい内容のシーンをチャプターから選んで下さい!!
この動画を見る 

確率分布と統計的推測 数B 確率分布の問題3【ユースケ・マセマティックがていねいに解説】

アイキャッチ画像
単元: #確率分布と統計的な推測#確率分布#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#確率分布と統計的推測#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
【問題】
A,Bの2人が,白玉2個と赤玉3個の入っている袋から,A,Bの順に玉を1個ずつ取り出していき,最初に白玉を取り出した人を勝ちとする。ただし,取り出した玉はもとに戻さないものとする。この勝負を20回行うとき,Aが勝つ回数Xの期待値と標準偏差を求めよ。
この動画を見る 

確率分布と統計的推測 数B 確率分布の問題2【ユースケ・マセマティックがていねいに解説】

アイキャッチ画像
単元: #確率分布と統計的な推測#確率分布#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#確率分布と統計的推測#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
【問題1】
2つの事象A,Bが独立であって,$P(A)=\frac{1}{2}$,$P(B)=\frac{1}{3}$であるとき,次の問いに答えよ。
(1)A,Bのうち少なくとも一方が起こる確率を求めよ。
(2) A,Bのうちどちらか一方のみが起こる確率を求めよ。

【問題2】
2,4,6の目が2面ずつ書かれた3個のさいころを同時に投げるとき,出る目の積の期待値を求めよ。

【問題3】
1つの面には1,2つの面には2,3つの面には3が書かれているさいころを2回投げて,1回目に出た目の数を十の位,2回目に出た目の数を一の位として得られる2桁の数をXとする。
(1)Xの確率分布を求めよ。
(2)Xの期待値と分散を求めよ。
この動画を見る 

確率分布と統計的推測 数B 確率分布の問題1【ユースケ・マセマティックがていねいに解説】

アイキャッチ画像
単元: #確率分布と統計的な推測#確率分布#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#確率分布と統計的推測#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
第1問
トランプのハート13枚を裏返しにしてよく混ぜてから,まずAが3枚抜き,抜いたカードはもとに戻さずに,続けてBが1枚抜くとき,A,Bが抜いた絵札の枚数を,それぞれX,Yとする。XとYの同時分布を求めよ。

第2問
100本のくじの中に30本の当たりくじがある。このくじから10本のくじを続けて引くとき,その中の当たりくじの本数をYとする。確率変数Yの期待値を求めよ。ただし,引いたくじはもとに戻さないとする。
この動画を見る 

確率分布と統計的推測 数B 確率変数の期待値と分散4【ユースケ・マセマティックがていねいに解説】

アイキャッチ画像
単元: #確率分布と統計的な推測#確率分布#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#確率分布と統計的推測#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
Nは2以上の自然数とする。1からnまでの自然数1, 2,………, nの各数を1つずつ書いたn枚のカードが入った箱がある。この箱から同時に2枚のカードを取り出して,そのうち大きい方の数をXとする。
(1)1≦k≦nである自然数kに対してX=kとなる確率を求めよ。
(2)Xの期待値と分散を求めよ。
この動画を見る 

確率分布と統計的推測 数B 確率変数の期待値と分散3【ユースケ・マセマティックがていねいに解説】

アイキャッチ画像
単元: #確率分布と統計的な推測#確率分布#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#確率分布と統計的推測#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
1と書かれたカードが2枚,2と書かれたカードが2枚,4と書かれたカードが1枚,計5枚のカードがある。この中から2枚のカードを取り出し,それらに書かれている数の和をXとするとき,確率変数Xの期待値と分散を求めよ。
この動画を見る 

確率分布と統計的推測 数B 確率変数の期待値と分散2【ユースケ・マセマティックがていねいに解説】

アイキャッチ画像
単元: #確率分布と統計的な推測#確率分布#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#確率分布と統計的推測#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
白玉6個と赤玉4個が入っている袋から玉を次の方法で取り出す。白玉の出た回数をXとするとき,Xの期待値と分散をそれぞれ求めよ。
(1)1個ずつ,もとに戻さず2回続けて取り出す。
(2)1個ずつ,2回取り出す。ただし,取り出した玉は毎回もとに戻す。
この動画を見る 

確率分布と統計的推測 数B 確率変数の期待値と分散1【ユースケ・マセマティックがていねいに解説】

アイキャッチ画像
単元: #確率分布と統計的な推測#確率分布#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#確率分布と統計的推測#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
ある確率変数Xの確率分布が下の表で与えられている。Xの期待値が3.2であるとき,p, qの値を求めよ。
X 1 2 3 4 5
P p q p p q
この動画を見る 

確率分布と統計的推測 数B 確率変数と確率分布【ユースケ・マセマティックがていねいに解説】

アイキャッチ画像
単元: #確率分布と統計的な推測#確率分布#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#確率分布と統計的推測#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
【問題1】
4枚の硬貨を同時に投げる試行を4回繰り返すとき,2枚が表で2枚が裏となる回数をXとする。P(X=k)(k=0,1,2,3,4)の式を求めよ。

【問題2】
4つの箱があり、その箱に,それぞれ1,2,3,4の番号がつけられている。1,2,3,4の番号がつけられている4枚のカードを1つの箱に1枚ずつ入れるとき,カードの番号と箱の番号が一致したものの個数をXとする。このとき,Xの確率分布と,P(X>2), P(X≦2)を求めよ。
この動画を見る 
PAGE TOP