4S数学CのB問題解説 - 質問解決D.B.(データベース)

4S数学CのB問題解説

【数C】【平面上のベクトル】ベクトルを使った面積、内心 ※問題文は概要欄

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題1
次の3点を頂点とする三角形の面積Sを求めよ。
(1)O(0,0),A(2,3),B(1,2)
(2)A(1,2),B(2+3,1+3),C(2,2+3)
(3)A(1+3,2),B(3,5),C(4+3,1)

問題2
OABにおいて、OA=a,OB=bとする。|a|=2,|b|=3,|a+b|=4のとき、OABの面積Sを求めよ。

問題3
A=60°,AB=8,AC=5であるABCの内心をIとする。AB=b,AC=cとするとき、AIb,cを用いて表せ。

問題4
三角形ABCの辺BC, CA, ABの中点をそれぞれA(1), B(1), C(1)とし、平面上の任意の点Oに対し、線分OA, OB, OCの中点をそれぞれA(2), B(2), C(2)とする。線分A(1)A(2), B(1)B(2),C(1)C(2)の中点は一致することを証明せよ。
この動画を見る 

【数C】【平面上のベクトル】ベクトル方程式1 ※問題文は概要欄

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題1
ABCの重心をG、辺BCの中点をMとし、GA=a,GB=bとする。
(1) AMGCa,bを用いて表せ。
(2)点Mを通り、辺CAに平行な直線上の点をPとし、GP=pとする。この直線のベクトル方程式を、a,b,pを用いて求めよ。

問題2
2直線 l:(x,y)=(0,3)+s(1,2),m:(x,y)=(6,1)+t(2,3)について、次の問いに答えよ。ただし、s,tは媒介変数とする。
(1)lmの交点の座標を求めよ。
(2)点P(4,1)からlに垂線PQを下ろす。このとき、点Qの座標を求めよ。

問題3
OABに対して、点Pが次の条件を満たしながら動くとき、点Pの存在範囲を図示せよ。
(1) OP=sOA+tOB,s+t=4,s0,t0
(2) OP=sOA+tOB,0s+t4,s0,t0
この動画を見る 

【数C】【平面上のベクトル】ベクトルと図形3 ※問題文は概要欄

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題1
ABCにおいて、AB=3,AC=2,A=60,外心をOとする。AB=b,AC=cとするとき、AOb,cを用いて表せ。

問題2
平行四辺形ABCDにおいて、次の等式が成り立つことを証明せよ。
2(AB2+BC2)AC2BD2

問題3
ABCの辺BCを1:2に内分する点をDとする。このとき、等式2AB2+AC2=3(AD2+2BD2)が成り立つことを証明せよ。
この動画を見る 

【数C】【平面上のベクトル】位置ベクトル ※問題文は概要欄

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題1
ABCの重心をGとするとき、この平面上の任意の点Pに対して、等式AP+BP2CP=3GCが成り立つことを証明せよ。

問題2
ABCと点Pに対して、次の等式が成り立つとき、点Pの位置をいえ。
(1) PA+PB+PC=AB
(2)AP+BP+CP=0
(3)PA+PC=AC

問題3
ABCと点Pに対して、等式 5AP+4BP+3CP=0が成り立っている。
(1)点Pの位置をいえ。
(2)PBC:PCA:PABを求めよ。
この動画を見る 

【数C】【平面上のベクトル】ベクトルの成分5 ※問題文は概要欄

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
a=(3,1) ,b=(1,2) のとし、c=a+tb (tは実数)とする。
(1) |c|=15 のとき、tの値を求めよ。
(2) |c|の最小値と、そのときのtの値を求めよ。
この動画を見る 

【数C】【平面上のベクトル】ベクトルの成分4 ※問題文は概要欄

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
a=(2,2) ,b=(3,1) のとき、xbaに平行で、
かつ |x+b|=4 となるようなx を成分表示せよ。
この動画を見る 

【数C】【平面上のベクトル】ベクトルの成分3 ※問題文は概要欄

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
a=(x,1) ,b=(2,3) について、
a+3bba
平行になるように、xの値を定めよ。
この動画を見る 

【数C】【平面上のベクトル】ベクトルの成分2 ※問題文は概要欄

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
平行四辺形の3つの頂点が A(-2 ,2) ,B(1 ,- 3) ,C(3 ,0) のとき、第4の頂点Dの座標を求めよ。
この動画を見る 

【数C】【平面上のベクトル】ベクトルの成分1 ※問題文は概要欄

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
a=(5,0) ,b=(2,3) とする。
等式 2x+y=a , x+2y=b を満たすx,y を成分表示せよ。
この動画を見る 

【数C】【平面上のベクトル】ベクトルの基本計算4 ※問題文は概要欄

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
四角形ABCDについて、次のことを証明せよ。
四角形ABCDが平行四辺形である ⇔ AC+BD=2AD



この動画を見る 

【数C】【平面上のベクトル】ベクトルの基本計算3 ※問題文は概要欄

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
平行四辺形ABCDの辺AB=a,AD=b , AE=u ,AF=v とするとき、a ,bu ,v を用いて表せ。


BCの中点をE、辺CD上の点でCF:FD=3:2 を満たす点をFとする。
この動画を見る 

【数C】【平面上のベクトル】ベクトルの基本計算2 ※問題文は概要欄

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)OA=2a ,OA=3b ,OP=6b4a であるとき、
 OP//AB であることを示せ。ただし、a0 ,b0 で、ab は平行でないとする。
(2)OA=a ,OB=b ,OP=3a2b ,OQ=3aである
とき、PQ//OB であることを示せ。ただし、a0 , b0 で、ab は平行でないとする。
この動画を見る 

【数C】【平面上のベクトル】ベクトルの基本計算1 ※問題文は概要欄

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の等式を同時に満たすベクトル x ,ya ,bを用いて表せ。


(1)
2x+y=a
xy=b

(2)
2b3y=a+b
x+y=ab

この動画を見る 

【数C】【複素数平面】複素数の回転と三角形 ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#複素数平面
指導講師: 理数個別チャンネル
問題文全文(内容文):
複素数平面上の3点O(0),A(2-i),Bについて、次の条件を満たしているとき、
点Bを表す複素数を求めよ。
(1)△OABが正三角形となる。(2)△OABがBを直角の頂点とする二等辺三角形になる。
この動画を見る 

【数C】【複素数平面】 極形式から三角比の値を求める ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#複素数平面
指導講師: 理数個別チャンネル
問題文全文(内容文):
1+i3+iを極形式で表すことにより、cos5π12sin5π12の値を求めよ。
この動画を見る 

【数C】【複素数平面】 極形式で表す ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#複素数平面
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の複素数を 極形式で表せ。ただし、偏角θは0≦θ<2πとする。

(1)4+3i1+7i

(2)3+1i1+i

(3)4(cosπ6+isinπ6)

(4)cos2π3isin2π3

(5)2(sinπ3+icosπ3)
この動画を見る 

【数C】【複素数平面】複素数の大きさ ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#複素数平面
指導講師: 理数個別チャンネル
問題文全文(内容文):
z=2iのとき、|z+1z|2の値を求めよ。
この動画を見る 

【数C】【複素数平面】実数であることの証明 ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#複素数平面
指導講師: 理数個別チャンネル
問題文全文(内容文):
α、βを複素数とし、α≠0とするとき、次のことを証明せよ。
αβが実数 ⇔ β=kαとなる実数kがある
この動画を見る 

【数C】【複素数平面】基本公式と式変形 ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#複素数平面
指導講師: 理数個別チャンネル
問題文全文(内容文):
複素数z3z+z¯=22iを満たすとき、以下の問いに答えよ。

(1)3z¯+zを求めよ。

(2)zを求めよ。
この動画を見る 

【数C】【平面上のベクトル】ベクトルと図形1 ※問題文は概要欄

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題1
ABCの辺ABBCCAを2:1に内分する点を、それぞれA1B11C1とする。更に、A1B1C1の辺A1B1B1C1を2:1に内分する点を、それぞれA2B2とする。このとき、A2B2//ABであることを示せ。

問題2
△ABCにおいて、辺BCを2:1に外分する点をP,辺ABを1:2に内分する点をQ、辺CAの中点をRとする。
(1)3点P,Q,Rは一直線上にあることを証明せよ。
(2)QR:QPを求めよ。

問題3
平行四辺形ABCDにおいて、辺ABを3:2に内分する点をP、対角線BDを2:5に内分する点をQとする。
(1)3点P,Q,Cは一直線上にあることを証明せよ。
(2)PQ:QCを求めよ。

問題4
△ABCにおいて、辺ABを1:2に内分する点をD、辺ACを3:1に内分する点をEとし、線分CD、BEの交点をPとする。AB=bAC=cとするとき、APbcを用いて表せ。
この動画を見る 
PAGE TOP preload imagepreload image