理数個別チャンネル - 質問解決D.B.(データベース) - Page 48

理数個別チャンネル

※下の画像部分をクリックすると、先生の紹介ページにリンクします。

担当科目:【小中高生対象】算数、数学、理科、英語、他

理数個別指導学院の講師陣が運営する、小・中・高生対象の「算数・数学・理科・英語」の問題や単元のピンポイント解説動画コンテンツです。
分からなくて困っている単元や問題文の一部を「知恵袋」感覚で是非検索してみてください。
「ほぼ毎日」更新中です!!

【数学】中高一貫校問題集2幾何176:三平方の定理:平面図形 共通接線の長さ1

アイキャッチ画像
単元: #数学(中学生)#中3数学#三平方の定理
教材: #TK数学#TK数学問題集2(幾何編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)図1で、2つの円O,O´は外接しており、A,Bは共通接線の接点である。O,O´の半径がそれぞれ5cm,2cmであるとき、線分ABの長さを求めなさい。
(2)図2で、A,Bは、2つの円O,O´の共通接線の接点である。O,O´の半径がそれぞれ5cm,3cmで、2つの円の中心間の距離が10cmであるとき、線分ABの長さを求めなさい。
この動画を見る 

【数学】中高一貫校問題集2幾何175:三平方の定理:平面図形 四角形の面積

アイキャッチ画像
単元: #数学(中学生)#中3数学#三平方の定理
教材: #TK数学#TK数学問題集2(代数編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の四角形ABCDの面積を求めなさい。ただし、(1)で、AD//BCである。
この動画を見る 

【削除覚悟】英検2級要約問題の倒し方【実践編】

アイキャッチ画像
単元: #英検・TOEIC・IELTS・TOEFL・IELTS等#英検#英検2級
指導講師: 理数個別チャンネル
問題文全文(内容文):
●以下の英文を読んで、その内容を英語で要約し、解答欄に記入しなさい。
●語数の目安は45語〜55語です。
●解答は、解答用紙の裏面にある英文要約解答欄に書きなさい。なお、解答欄の外に書かれたものは採点されません。
●解答が英文の要約になっていないと判断された場合は、0点と採点されることがあります。
英文をよく読んでから答えてください。

When exercising, some people like to walk or run, while others may join a gym or take swimming lessons. There are other options, too. These days, cycling is a very popular way for people to exercise.
Why do people choose cycling? Cycling is an excellent way to keep fit because it is good for the health, and it does not cause too much stress on the knees and back. Cycling also does not produce CO2 or cause traffic jams, so it is good for society when people use bicycles for commuting to work or going to school.
However, it might be difficult to ride a bicycle when it is raining heavily or snowing. Also, some places could be dangerous to ride, like narrow roads or roads with a lot of traffic. As a result, accidents involving cyclists may occur.
この動画を見る 

【数学】中高一貫校問題集2幾何174:三平方の定理:平面図形 三角形の面積+ヘロンの公式

アイキャッチ画像
単元: #数学(中学生)#中3数学#三平方の定理
教材: #TK数学#TK数学問題集2(幾何編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の△ABCの面積を求めなさい。(3辺の長さが2cm、3cm、4cmの三角形の面積を求めよ)
この動画を見る 

2次不等式はこの手順通りに考えれば解けちゃう!? #数学 #高校数学 #不等式

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2次不等式はこの手順通りに考えれば解けちゃう!?
この動画を見る 

【高校数学】2次不等式はこれでマスター!この手順通りに考えれば解けちゃう【数学のコツ】

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2次不等式はこれでマスター!この手順通りに考えれば解けちゃう
この動画を見る 

英検準1級ライティングでやってはいけない初歩的ミスを紹介 #英検 #英検対策 #英検準1級 #理数個別指導学院 #島田雄太

アイキャッチ画像
単元: #英検・TOEIC・IELTS・TOEFL・IELTS等#英検#英検準1級
指導講師: 理数個別チャンネル
問題文全文(内容文):
英検準1級ライティングでやってはいけない初歩的ミスを紹介します
この動画を見る 

英検2級ライティングの添削公開 #英検 #英検対策 #英検2級 #理数個別指導学院 #島田雄太

アイキャッチ画像
単元: #英検・TOEIC・IELTS・TOEFL・IELTS等#英検#英検2級
指導講師: 理数個別チャンネル
問題文全文(内容文):
英検2級ライティングの添削公開です
この動画を見る 

三角関数 数 三角関数の不等式2【NI・SHI・NOがていねいに解説】

単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$0\leqq θ\lt 2π$のとき,次の不等式を解け。
(1) $\sin (θ+\displaystyle \frac{π}{4})\leqq \displaystyle \frac{\sqrt{3}}{2}$

(2) $\tan (θ-\displaystyle \frac{π}{6})\gt 1$

(3) $\cos (θ-\displaystyle \frac{π}{3})\lt -\displaystyle \frac{\sqrt{3}}{2}$

(4) $\tan (θ+\displaystyle \frac{π}{6})\geqq -\sqrt{3}$
この動画を見る 

【高校数学】全て覚える必要はない!?三角関数の性質のコツ【数学のコツ】

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角関数の性質のコツを解説していきます.
この動画を見る 

2024年度第1回K塾記述模試数学Ⅲ型全問解説

アイキャッチ画像
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
【1】
(1) 不等式$2| x-2|-x≦$4を解け。
(2) 関数$f(x)=\log_{ 2 } (x-1)+2\log_{ 4 } (3-2x)$の最大値を求めよ。
(3) 曲線$y=x^3+2x^2$とx軸によって囲まれた部分の面積を求めよ。
(4) $\displaystyle \sum_{k=1}^n \displaystyle \frac{1}{4k^2-1}$をnを用いて表せ。
(5) $OA=2,OB=3,∠AOB=60°$である三角形$OAB$において辺$AB$を$1:3$に内分する点を$C$とする。
(ⅰ) $OC$を$OA,OB$を用いて表せ。
(ⅱ) $|OC|$を求めよ。


【2】
1個のサイコロを繰り返し振る。$k$回目($k=1,2,3,…$)に奇数の目が出たら、その目の数を$x_k$とし、偶数の目が出たら、その目の数を2で割った商を$x_k$とする。 $S_n=x_1+x_2+x_3+…+x_n$ ($n=1,2,3,…$) と定める。
(1) $S_1=3$ である確率、$S_2=6$ である確率をそれぞれ求めよ。
(2) $S_4=12$ である確率を求めよ。
(3) $S_4=12$ であったとき、$S_2=6$ である確率を求めよ。

【3】
$A$を正の定数とし、$0\leqq\theta\lt 2\pi$において、$\theta$の方程式 $a\sin2\theta-2a^2\cos\theta-\sin\theta+a=0$  …(*) を考える。
(1) $a=1$のとき、(*)を解け。
(2) (*)がちょうど3つの解をもつような$a$の値を求めよ。
(3) (*)がちょうど4つの解をもつとする。4つの解のうち、最小のものを$\alpha$、最大のものを$\beta$とするとき、$\alpha+\beta$の値を求めよ。


【4】
$xy$平面上において、連立不等式 $x\geqq 0,y\geqq 0,x+y\leqq 1$ で表された領域を$D$とする。
(1) 点P($x,y$)が$D$上を動くとき $X=2x-6y,Y=5x+y$ によって定められる点$Q$($X,Y$)が存在する領域を$XY$平面上図示せよ。
(2) $a$を実数の定数とする。点$P$($x,y$)が$D$上を動くとき   $(2x-6y-a)^2+(5x+y)^2$ の最大値を$a$を用いて表せ。


【5】
平面上に直線lとそれに接する半径1の円$C_1$がある。$C_1$の右側にあり、$C_1$と$l$に接する円を$C_2$とする。 $C_n$の中心を$A_n$,半径を$r_n,C_n$と$l$の接点を$B_n$とすると $A_nB_n:A_nA_(n+1)=1:p$ が成り立っている。ただし、$p$は$1\lt p\lt 2$を満たす定数とする。
(1) $r_(n+1)$を$r_n$,$p$を用いて表し、$r_n$求めよ。 また、$Σr_n=3$となるような$p$の値を求めよ。
(2) $p$を(1)で求めた値とする。
(ⅰ) $\ B_nB_{n+1}$を求めよ
(ⅱ) 極限値$\displaystyle\lim_{n\to\infty}{B_1B_n}$を求めよ
(ⅲ) $\alpha=\displaystyle\lim_{n\to\infty}{B_1B_n}$とし、$\beta$を正の定数とする。   極限$\displaystyle\lim_{n\to\infty}(B1Bn-\alpha)\beta n$が0以外の値に収束するよう$\beta$の値と、そのときの極限値を求めよ。


【6】
$a$を正の定数とし、$i$を虚数単位とする。複素数$z$に関する2つの方程式 $z^3=-8i$…①   $z^2-2az+8=0$…②   を考える。
(1) ①を満たす$z$について、$z$の極形式を $z=r(\cos\theta+i\sin\theta)r\gt 0,0\leqq\theta\lt 2\pi$ と表すとき、$r,\theta$の値を求めよ。
(2) ②が異なる2つの虚数解$\alpha,\beta$を持ち、複素数平面上で3点$0,\alpha,\beta$を頂点とする三角形の面積が4であるとする。ただし、($\alpha$の虚部)>($\beta$の虚部)。 (ⅰ) $a$の値と$\alpha,\beta$を求めよ。
(ⅱ)偏角を0以上$2\pi$未満の値で考えるとき,①の解のうち偏角が最大であるものを$γ$とする。複素数平面上で3点$\alpha,\beta,γ^n$を頂点とする三角形の内部に原点が存在するような正の整数$n$を求めよ。
この動画を見る 

【K塾】【情報Ⅰ】2024年度第1回K塾共通テスト模試第4問解説

アイキャッチ画像
単元: #情報Ⅰ(高校生)#模試解説・過去問解説#【河合塾】全統共通テスト模試
指導講師: 理数個別チャンネル
問題文全文(内容文):
2024/05/05に実施されたK塾の共テ模試『情報Ⅰ』の第4問の解説です!
この動画を見る 

【新型英検直前企画】英検3級・準2級・2級(準1級の新型英検scbtの情報もあり!)の新型問題対策【しまだじろう・YAKISOBA先生】※級ごとのチャプター有り+要約添削サービスのお知らせ

アイキャッチ画像
単元: #英検・TOEIC・IELTS・TOEFL・IELTS等#英検#英検2級#英検準2級#英検3級#英検準1級
指導講師: 理数個別チャンネル
問題文全文(内容文):
◎3級
Hi,
Thank you for your e-mail.
I heard that you went to your friend's birthday party. I want to know
more about it. How many people were at the party? And how was the
food?
Your friend,
James
================================
Hi, James!
Thank you for your e-mail.
<解答欄に記入しなさい>
Best wishes,

◎準2級
Hi!
Guess what! My father bought me a robot pet last week online. I wanted
to get a real dog, but my parents told me it's too difficult to take care of
dogs. They suggested that we get a robot dog instead. I'm sending a
picture of my robot with this e-mail. My robot is cute, but there's a
problem. The battery doesn't last long. Do you think that robot pets will
improve in the future?
Your friend,
Alex
================================
Hi, Alex!
Thank you for your e-mail.
<解答欄に記入しなさい>
Best wishes,

◎2級
●以下の英文を読んで、その内容を英語で要約し、解答欄に記入しなさい。
●語数の目安は45語~55語です。
●解答は、解答用紙の裏面にある英文要約解答欄に書きなさい。なお、解答欄の外に書かれたものは採点されません。
●解答が英文の要約になっていないと判断された場合は、0点と採点されることがあります。英文をよく読んでから答えてください。

Usually, university students go to their campus and take their classes there in person. Some of them may also visit other universities and join their programs. There are other options to take lessons, too. These days, online classes are available at many universities.

When students belong to an online program, they can have the opportunity to access their classes in two main ways. They can attend them live or view the recordings of them afterward by streaming or downloading them whenever they want over the Internet. Also, students do not have to commute to school, so they do not have to pay for things like bus or train tickets.

On the other hand, studying online can cause some students to become lonely because they do not meet their other classmates. On top of that, it can take time for them to build their relationships with their professors due to a lack of face-to-face interactions.
この動画を見る 

【K塾】【情報Ⅰ】2024年度第1回K塾共通テスト模試第3問解説

アイキャッチ画像
単元: #情報Ⅰ(高校生)#模試解説・過去問解説#【河合塾】全統共通テスト模試
指導講師: 理数個別チャンネル
問題文全文(内容文):
2024/05/05に実施されたK塾の共テ模試『情報Ⅰ』の第3問の解説です!
この動画を見る 

【高校数学】定期テスト直前対策!個別指導プロ講師が厳選したプレテスト〜多項式の展開、因数分解〜【数学のコツ】

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
個別指導プロ講師が厳選したプレテスト〜多項式の展開、因数分解を解説していきます.
この動画を見る 

【K塾】【情報Ⅰ】2024年度第1回K塾共通テスト模試第2問解説

アイキャッチ画像
単元: #情報Ⅰ(高校生)#模試解説・過去問解説#【河合塾】全統共通テスト模試
指導講師: 理数個別チャンネル
問題文全文(内容文):
2024/05/05に実施されたK塾の共テ模試『情報Ⅰ』の第2問の解説です!
この動画を見る 

【数学模試解説】2024年度第1回K塾マーク模試数Ⅰ,A(新課程)第一問解説

アイキャッチ画像
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
第一問

[1]方程式$9x^2-6x-1=0$の二つの実数解をα,β(α<β)とすると

$α=\displaystyle \frac{ア-\sqrt{イ}}{ウ}$,$β=\displaystyle \frac{ア+\sqrt{イ}}{ウ}$

である。

(1)$n\lt\displaystyle \frac{1}{β}\lt n+1$を満たす整数nは エ である

(2)xについての連立不等式

$\left\{
\begin{array}{l}
αx \lt 1\\
βx \lt 1
\end{array}
\right.$

を考える。
αの符号に注意すると、不等式①の解は オ と表される。
よって連立不等式①かつ②の解は カ と表される。

オ の解答群

⓪ $x\lt\displaystyle \frac{1}{α}$  ① $\displaystyle \frac{1}{α}\lt x$

カ の解答群

⓪ $x\lt\displaystyle \frac{1}{α}$  ① $\displaystyle \frac{1}{α}\lt x\lt\displaystyle \frac{1}{β}$  ② $\displaystyle \frac{1}{β}\lt x$

(3)-9以上9以下の整数のうち、(2)の連立不等式①かつ②の解の範囲に含まれるものの個数は キ 個である。

[2]△ABCにおいて、$AB=7$,$BC=3\sqrt{2}$,$CA=5$とする。このとき

$cos ∠BAC=\displaystyle \frac{ク}{ケ}$,$sin ∠BAC=\displaystyle \frac{コ}{サ}$

である。

△ABCの外接円の中心Oとすると、円Oの半径は$\displaystyle \frac{シ\sqrt{ス}}{セ}$である。
円OのAを含まない弧BC上に点Pを、△PBCの面積が最大となるようにとる。このとき

$PC=\sqrt{ソ}$

である。

また、直線AOと円Oとの交点のうち、Aと異なる方をDとすると

$CD= タ $

であり、

$∠ADC= チツ°$

である。

直線AD上に動点Qをとり、二つの線分$CQ$、$PQ$の長さの和を $L = CQ + PQ$ とする。

太郎:Lの最小値を求めるにはどうすればよいのかな。
花子:直線ADに関してCと対称な点を考えればよいね。

$AB^2\gt BC^2+CA^2$が成り立つから∠ACBは鈍角であり、直線ADに関して3 点B, C, Pがすべて同じ側にあることに注意して考えると、Lの最小値は$テ\sqrt{ト}$である。
この動画を見る 

【K塾】【情報Ⅰ】2024年度第1回K塾共通テスト模試第1問解説

アイキャッチ画像
単元: #情報Ⅰ(高校生)#模試解説・過去問解説#【河合塾】全統共通テスト模試
指導講師: 理数個別チャンネル
問題文全文(内容文):
2024/05/05に実施されたK塾の共テ模試『情報Ⅰ』の第1問の解説です!
この動画を見る 

【小6算数手元解説】容器に容器を入れる問題【問題文は概要欄】

単元: #算数(中学受験)#立体図形#体積・表面積・回転体・水量・変化のグラフ
教材: #SPX#6年算数W-支援#中学受験教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
底面が正方形の角柱の容器A、Bがあります。Aは底面の一辺の長さが20cmで高さが50cm、Bは底面の一辺の長さ10cmで高さが30cmです。Aに高さ46cmまで水を入れます。次に、水の入っていないBをAの水面に垂直に、静かに沈めていくとき、次の(1)、(2)、(3)に答えなさい。ただし、Bの厚さはないものとします。
(1)Aから水が外にこぼれはじめるのは、Bの底面がAの底面から何cmのときですか。
(2)さらにBを沈めていきます。その途中で止めたら、Bに深さ24cmまで水が入っていきました。このとき、Bの底面はAの底面から何cmのところにありますか。
(3)さらにBを沈めていって、Aの底面についたとき、Aの水の深さは何cmになっていますか。
この動画を見る 

【高校数学】テスト直前の高校1年生は必見!因数分解はこの手順で考えると上手くいく!#高校数学 #因数分解 #数学

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
因数分解のコツを解説していきます.
この動画を見る 

【高校数学】テスト直前の高校1年生は必見!因数分解はこの手順で考えると上手くいく!【数学のコツ】

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の式を因数分解せよ。
(1)$9a^3b+3a^2b^2-3ab^2$
(2)$5a^3-20ab^2$
(3)$10a^2+14ab-12b^2$
(4)$xy-x-y+1$
(5)$ab+bc-cd-da$
(6)$a^2+b^2+2bc+2ca+2ab$
この動画を見る 

【高校数学】【図形と方程式】領域の超時短裏ワザ!後編

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
定期考査直前、「この問題だけはできるようにしよう!」ってことで領域の問題を裏ワザで解説してみました。(割と有名なので知ってる人はゴメンナサイ)この動画は前編( • 【高校数学】【図形と方程式】領域の超時短裏ワザ!前編【後編は明日18時公開!】 )を見てからご覧ください!
この動画を見る 

【新型英検リニューアル対策】要約問題で使えるフレーズ2

アイキャッチ画像
単元: #英語リスニング・スピーキング#スピーキング#英検
指導講師: 理数個別チャンネル
問題文全文(内容文):
要約問題で使えるフレーズ2解説していきます.
この動画を見る 

【高校数学】【図形と方程式】領域の超時短裏ワザ!前編【後編は明日18時公開!】

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
定期考査直前、「この問題だけはできるようにしよう!」ってことで領域の問題を裏ワザで解説してみました。(割と有名なので知ってる人はゴメンナサイ)
この動画では「$x-2y-4\geqq 0$」を図示します!
この動画を見る 

【T進】2024年度第2回共テ本番レベル模試『情報Ⅰ』第4問解説

アイキャッチ画像
単元: #情報Ⅰ(高校生)#模試解説・過去問解説#【東進】共テ本番レベル模試
指導講師: 理数個別チャンネル
問題文全文(内容文):
2024/04/28に実施された東進の共テ本番レベル模試『情報Ⅰ』の第4問の解説です!
この動画を見る 

【T進】2024年度第2回共テ本番レベル模試『情報Ⅰ』第3問解説

アイキャッチ画像
単元: #情報Ⅰ(高校生)#模試解説・過去問解説#【東進】共テ本番レベル模試
指導講師: 理数個別チャンネル
問題文全文(内容文):
2024/04/28に実施された東進の共テ本番レベル模試『情報Ⅰ』の第3問の解説です!
この動画を見る 

【T進】第2回共テ本番レベル模試『情報Ⅰ』第2問解説

アイキャッチ画像
単元: #情報Ⅰ(高校生)#模試解説・過去問解説#【東進】共テ本番レベル模試
指導講師: 理数個別チャンネル
問題文全文(内容文):
2024/04/28に実施された東進の共テ本番レベル模試『情報Ⅰ』の第2問の解説です!
この動画を見る 

【T進】2024年度第2回共テ本番レベル模試『情報Ⅰ』第2問解説

アイキャッチ画像
単元: #情報Ⅰ(高校生)#模試解説・過去問解説
指導講師: 理数個別チャンネル
問題文全文(内容文):
2024年度第2回共テ本番レベル模試『情報Ⅰ』第2問解説します.
この動画を見る 

【T進】2024年度第2回共テ本番レベル模試『情報Ⅰ』第1問解説

アイキャッチ画像
単元: #情報Ⅰ(高校生)#模試解説・過去問解説#【東進】共テ本番レベル模試
指導講師: 理数個別チャンネル
問題文全文(内容文):
2024/04/28に実施された東進の共テ本番レベル模試『情報Ⅰ』の第1問の解説です!
この動画を見る 

【新型英検リニューアル対策】要約問題で使えるフレーズ1

アイキャッチ画像
単元: #英語(高校生)#英作文#英検・TOEIC・IELTS・TOEFL・IELTS等#英検#英検2級#英検準1級#自由英作文
指導講師: 理数個別チャンネル
問題文全文(内容文):
英検がいよいよリニューアル。準1級の要約問題(サンプル)をベースに、「賛否両論あり」という表現を教えます。
この動画を見る 
PAGE TOP