算数(中学受験)
算数(中学受験)
【高校受験対策】数学-死守32

単元:
#数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#2次方程式#平行と合同#確率#速さ#速さその他#表とグラフ#表とグラフ・集合
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①$-2+5$を計算しなさい。
②$3 + 3 ^ 4 \div (- 9)$を計算しなさい。
③$4(2a - 3) - 2(3a - 5)$を計算しなさい。
④$\dfrac{x-y}{6}-\dfrac{x+y}{8}$を計算しなさい。
⑤$3\sqrt8 - \sqrt{50} + sqrt{18}$を計算しなさい。
⑥2次方程式$(x + 2)(x - 2) = 2(3x - 2)$を解きなさい。
⑦かずよしくんは、自宅から1800mはなれた学校に登校するため、
午前7時30分に家を出発した。
最初は毎分60mの速さで歩いていたが、遅刻しそうになったので、
途中から毎分100mの速さで走ったところ、午前7時56分に学校に着いた。
かずよしくんが走った道のりは何mか、求めなさい。
⑧赤球3個と白球3個が入っている袋がある。
この袋の中から、同時に2個の球を取り出すとき、
赤球と白球が1個ずつである確率を求めなさい。
ただし、どの球を取り出すことも、同様に確からしいものとする。
⑨左下の図1で、正六角形$ABCDEF$に、2つの平行な直線$\ell、m$が交わっており、
交点はそれぞれ$G、H、I、J$である。
$\angle GHF=78°$のとき、$\angle IJE$の大きさを求めなさい。
⑩ある中学校の1年A組25人と1年B組25人の休日の学習時間を調べた。
下の図2、 図3は、それぞれの結果をヒストグラムに表したもので、
2つの図から「1年A組は1年B組 より、$\Box$」と読みとることができた。
$\Box$にあてはまるものとして適切なものを、 下のア~エから1つ選び、記号で書きなさい。
ア→学習時間の分布の範囲が小さい
イ→最頻値を含む階級の度数が多い
ウ→中央値を含む、階級の度数が少ない
エ→学習時間が150分以上の人数が多い
図は動画内参照
この動画を見る
①$-2+5$を計算しなさい。
②$3 + 3 ^ 4 \div (- 9)$を計算しなさい。
③$4(2a - 3) - 2(3a - 5)$を計算しなさい。
④$\dfrac{x-y}{6}-\dfrac{x+y}{8}$を計算しなさい。
⑤$3\sqrt8 - \sqrt{50} + sqrt{18}$を計算しなさい。
⑥2次方程式$(x + 2)(x - 2) = 2(3x - 2)$を解きなさい。
⑦かずよしくんは、自宅から1800mはなれた学校に登校するため、
午前7時30分に家を出発した。
最初は毎分60mの速さで歩いていたが、遅刻しそうになったので、
途中から毎分100mの速さで走ったところ、午前7時56分に学校に着いた。
かずよしくんが走った道のりは何mか、求めなさい。
⑧赤球3個と白球3個が入っている袋がある。
この袋の中から、同時に2個の球を取り出すとき、
赤球と白球が1個ずつである確率を求めなさい。
ただし、どの球を取り出すことも、同様に確からしいものとする。
⑨左下の図1で、正六角形$ABCDEF$に、2つの平行な直線$\ell、m$が交わっており、
交点はそれぞれ$G、H、I、J$である。
$\angle GHF=78°$のとき、$\angle IJE$の大きさを求めなさい。
⑩ある中学校の1年A組25人と1年B組25人の休日の学習時間を調べた。
下の図2、 図3は、それぞれの結果をヒストグラムに表したもので、
2つの図から「1年A組は1年B組 より、$\Box$」と読みとることができた。
$\Box$にあてはまるものとして適切なものを、 下のア~エから1つ選び、記号で書きなさい。
ア→学習時間の分布の範囲が小さい
イ→最頻値を含む階級の度数が多い
ウ→中央値を含む、階級の度数が少ない
エ→学習時間が150分以上の人数が多い
図は動画内参照
【高校受験対策】数学-死守31

単元:
#数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#平方根#2次方程式#確率#2次関数#表とグラフ#表とグラフ・集合
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①$13 + 3\times (- 6)$を計算せよ。
②$3(2a + 3) - 2(5a + 4)$ を計算せよ。
③$a = - 3 , b = 4$とき、$3a^2-5b$の値を求めよ。
④$\dfrac{30}{\sqrt5}+\sqrt{20}$を計算せよ。
⑤ 1次方程式$3x-8=7x+16$を解け。
⑥2次方程式$(x + 1) ^ 2 = x + 13$を解け。
⑦関数$y =\dfrac{2}{3}x^2$について、
$x$の変域が$-1\leqq x \leqq 3$のときの$y$の変域を求めよ。
⑧$\boxed{1},\boxed{3},\boxed{5},\boxed{7},\boxed{9}$のカードが1枚ずつある。
この5枚のカードから、同時に2枚のカードを取り出すとき、
その2枚のカードにかかれている数の和が10以上になる確率を求めよ。
ただし、どのカードを取り出すことも同様に確からしいものとする。
⑨右の表は、A中学校とB中学校の生徒を対象に、
携帯電話やスマートフォンの1日あたりの使用時間を調査し、
その結果を度数分布表に整理したものである。
この表をもとに、A中学校とB中学校の「0時間以上1時間未満」の階級の相対度数のうち、
大きい方の相対度数を四捨五入して小数第2位まで求めよ。
図は動画内参照
この動画を見る
①$13 + 3\times (- 6)$を計算せよ。
②$3(2a + 3) - 2(5a + 4)$ を計算せよ。
③$a = - 3 , b = 4$とき、$3a^2-5b$の値を求めよ。
④$\dfrac{30}{\sqrt5}+\sqrt{20}$を計算せよ。
⑤ 1次方程式$3x-8=7x+16$を解け。
⑥2次方程式$(x + 1) ^ 2 = x + 13$を解け。
⑦関数$y =\dfrac{2}{3}x^2$について、
$x$の変域が$-1\leqq x \leqq 3$のときの$y$の変域を求めよ。
⑧$\boxed{1},\boxed{3},\boxed{5},\boxed{7},\boxed{9}$のカードが1枚ずつある。
この5枚のカードから、同時に2枚のカードを取り出すとき、
その2枚のカードにかかれている数の和が10以上になる確率を求めよ。
ただし、どのカードを取り出すことも同様に確からしいものとする。
⑨右の表は、A中学校とB中学校の生徒を対象に、
携帯電話やスマートフォンの1日あたりの使用時間を調査し、
その結果を度数分布表に整理したものである。
この表をもとに、A中学校とB中学校の「0時間以上1時間未満」の階級の相対度数のうち、
大きい方の相対度数を四捨五入して小数第2位まで求めよ。
図は動画内参照
【高校受験対策】数学-死守30

単元:
#数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#2次方程式#空間図形#立体図形#立体図形その他
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①$-7+11$を計算しなさい。
②$9\times \left(-\dfrac{4}{15}\right)$を計算しなさい。
③$- 4(3 - 2x) + (- 6x + 9)$を計算しなさい。
④$\sqrt{45}-\sqrt5$を計算しなさい。
⑤一次方程式$2x - 15 = - x$を解きなさい。
⑥$x ^ 2 + 3x - 28 $を因数分解しなさい。
⑦二次方程式$2x ^ 2 + 3x - 4 = 0$を解きなさい。
⑧「1個$ag$のおもり3個の重さは$100g$以下である。」という数量の関係を
不等式で表しなさい。
⑨関数$y=2x-3$のグラフに平行な直線の式を、
次のア~カからすべて選び番号を書きなさい。
ア→$y = - 2x - 3$
イ→$y = 2x ^ 2$
ウ→$y = 5x - 3$
エ→$y = 2x + 3$
オ→$y = \dfrac{1}{2}x$
カ→$y = 2x$
⑩$x = 2,y=1$が解になっている連立方程式を、次のア~ウから1つ選びなさい。
$ア→\begin{eqnarray}
\left\{
\begin{array}{l}
x+y=3 \\
x+4y=9
\end{array}
\right.
\end{eqnarray}$
$イ→\begin{eqnarray}
\left\{
\begin{array}{l}
4x-y=7 \\
5x-3y=0
\end{array}
\right.
\end{eqnarray}$
$ウ→\begin{eqnarray}
\left\{
\begin{array}{l}
3x-y=5 \\
-x+4y=2
\end{array}
\right.
\end{eqnarray}$
⑪方程式$3x - 4y = 5x - y = 17$を解きなさい。
⑫底面の半径が3cm、高さが5cmの円柱がある。
この円柱の側面積を求めなさい。
この動画を見る
①$-7+11$を計算しなさい。
②$9\times \left(-\dfrac{4}{15}\right)$を計算しなさい。
③$- 4(3 - 2x) + (- 6x + 9)$を計算しなさい。
④$\sqrt{45}-\sqrt5$を計算しなさい。
⑤一次方程式$2x - 15 = - x$を解きなさい。
⑥$x ^ 2 + 3x - 28 $を因数分解しなさい。
⑦二次方程式$2x ^ 2 + 3x - 4 = 0$を解きなさい。
⑧「1個$ag$のおもり3個の重さは$100g$以下である。」という数量の関係を
不等式で表しなさい。
⑨関数$y=2x-3$のグラフに平行な直線の式を、
次のア~カからすべて選び番号を書きなさい。
ア→$y = - 2x - 3$
イ→$y = 2x ^ 2$
ウ→$y = 5x - 3$
エ→$y = 2x + 3$
オ→$y = \dfrac{1}{2}x$
カ→$y = 2x$
⑩$x = 2,y=1$が解になっている連立方程式を、次のア~ウから1つ選びなさい。
$ア→\begin{eqnarray}
\left\{
\begin{array}{l}
x+y=3 \\
x+4y=9
\end{array}
\right.
\end{eqnarray}$
$イ→\begin{eqnarray}
\left\{
\begin{array}{l}
4x-y=7 \\
5x-3y=0
\end{array}
\right.
\end{eqnarray}$
$ウ→\begin{eqnarray}
\left\{
\begin{array}{l}
3x-y=5 \\
-x+4y=2
\end{array}
\right.
\end{eqnarray}$
⑪方程式$3x - 4y = 5x - y = 17$を解きなさい。
⑫底面の半径が3cm、高さが5cmの円柱がある。
この円柱の側面積を求めなさい。
【高校受験対策】数学-死守29

単元:
#数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#2次方程式#1次関数#2次関数#円#立体図形#立体切断#立体図形その他
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①$16a \div (- 8)$を計算しなさい。
②$-12 + 2\times (- 5)$を計算しなさい。
③$\sqrt{50} - 2\sqrt{2}$を計算しなさい。
④$18ab \div \dfrac{3}{8}a \times b$を計算しなさい。
⑤$x = sqrt3 - 3$のとき、$x ^ 2 + 6x$の値を求めなさい。
⑥2次方程式$x ^ 2 + 3x = 8x - 2$を解きなさい。
⑦$\sqrt7 = 2.646$として、$\sqrt{0.07} $の値を求めなさい。
⑧右の図1は、立方体の展開図である。 この展開図を組み立てて作られる立方体について、
辺$AB$と垂直な面をア~カのなかからすべて選び、符号で書きなさい。
⑨その値が正の値をとらない関数を、次のア~エから1つ選び、符号で書きなさい。
ア→$y= -\dfrac{x}{2}$
イ→$y = -\dfrac{2}{x}$
ウ→$y = -2x + 3$
エ→$y = - 2x ^ 2$
⑩右の図2は、円錐の展開図である。
側面になるおうぎ形の半径が8cm、 底面になる円の半径が3cmのとき、
おうぎ形の面積を求めなさい。 ただし、円周率は$\pi$とする。
図は動画内参照
この動画を見る
①$16a \div (- 8)$を計算しなさい。
②$-12 + 2\times (- 5)$を計算しなさい。
③$\sqrt{50} - 2\sqrt{2}$を計算しなさい。
④$18ab \div \dfrac{3}{8}a \times b$を計算しなさい。
⑤$x = sqrt3 - 3$のとき、$x ^ 2 + 6x$の値を求めなさい。
⑥2次方程式$x ^ 2 + 3x = 8x - 2$を解きなさい。
⑦$\sqrt7 = 2.646$として、$\sqrt{0.07} $の値を求めなさい。
⑧右の図1は、立方体の展開図である。 この展開図を組み立てて作られる立方体について、
辺$AB$と垂直な面をア~カのなかからすべて選び、符号で書きなさい。
⑨その値が正の値をとらない関数を、次のア~エから1つ選び、符号で書きなさい。
ア→$y= -\dfrac{x}{2}$
イ→$y = -\dfrac{2}{x}$
ウ→$y = -2x + 3$
エ→$y = - 2x ^ 2$
⑩右の図2は、円錐の展開図である。
側面になるおうぎ形の半径が8cm、 底面になる円の半径が3cmのとき、
おうぎ形の面積を求めなさい。 ただし、円周率は$\pi$とする。
図は動画内参照
【高校受験対策】数学-図形19

単元:
#数学(中学生)#中1数学#空間図形#立体図形#立体図形その他
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
図1の立体は、$AB=6cm、 AD = 2cm 、 AE = 4cm$の直方体である。
このとき、次の問に答えなさい。
①辺$AB$とねじれの位置にあり、面$ABCD$と平行である辺はどれか、すべて答えなさい。
②図2のように、面$EFGH$の対角線$EG、HF$の交点を$I$とする。
$\triangle DHI$を、辺$DH$を軸として1回転させてできる円すいの母線の長さを求めなさい。
(図3のように、$AB、BF$上の点をそれぞれ$P、Q$とする)
③図3において、$DP+PQ+QG$が最小となるときの
$DP+PQ+QC$の値を求めなさい。
④図3において、$DP+PQ+QG$が最小となるときの、
三角すい$BPQC$の体積を求めなさい。
図は動画内参照
この動画を見る
図1の立体は、$AB=6cm、 AD = 2cm 、 AE = 4cm$の直方体である。
このとき、次の問に答えなさい。
①辺$AB$とねじれの位置にあり、面$ABCD$と平行である辺はどれか、すべて答えなさい。
②図2のように、面$EFGH$の対角線$EG、HF$の交点を$I$とする。
$\triangle DHI$を、辺$DH$を軸として1回転させてできる円すいの母線の長さを求めなさい。
(図3のように、$AB、BF$上の点をそれぞれ$P、Q$とする)
③図3において、$DP+PQ+QG$が最小となるときの
$DP+PQ+QC$の値を求めなさい。
④図3において、$DP+PQ+QG$が最小となるときの、
三角すい$BPQC$の体積を求めなさい。
図は動画内参照
【高校受験対策】数学-死守27

単元:
#数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#平方根#2次方程式#比例・反比例#空間図形#円#表とグラフ#表とグラフ・集合
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①$x-6x$を計算しなさい。
②$\sqrt{28)}- \sqrt{7}$を計算しなさい。
③$x = sqrt2 + 3$のとき、$x ^ 2 - 6x + 9$の値を求めなさい。
④2次方程式$x ^ 2 - 2x - 7 = 0$を解きなさい。
⑤次の連立方程式を解きなさい。
$\begin{eqnarray}
\left\{
\begin{array}{l}
x+3y=4 \\
3x+2y=19
\end{array}
\right.
\end{eqnarray}$
⑥$y$は$x$に反比例し、$x = - 4a$のとき、$y = 3$です。
$x = 2$のときの$y$の値を求めなさい。
⑦中学生12人が、あるゲームを行いました。
左下の資料1は、そのゲームの得点を示したものです。
この資料の中央値(メジアン)と分布の範囲をそれぞれ求めなさい。
⑧半径が8cm、弧の長さが4匹cmのおうぎ形の面積を求めなさい。
ただし、円周率は$\pi$とする。
⑨ある2けたの自然数は、十の位の数と一の位の数の和が10で、
十の位の数と一の位の数の積が21です。
この2けたの自然数として考えられる数をすべて求めなさい。
⑩右の図のような三角柱$ABC-DEF$があります。
点$G$は辺$AD$の中点です。
三角柱$ABC-DEF$の体積は三角錐$G-DEF$の体積の何倍ですか。
図は動画内参照
この動画を見る
①$x-6x$を計算しなさい。
②$\sqrt{28)}- \sqrt{7}$を計算しなさい。
③$x = sqrt2 + 3$のとき、$x ^ 2 - 6x + 9$の値を求めなさい。
④2次方程式$x ^ 2 - 2x - 7 = 0$を解きなさい。
⑤次の連立方程式を解きなさい。
$\begin{eqnarray}
\left\{
\begin{array}{l}
x+3y=4 \\
3x+2y=19
\end{array}
\right.
\end{eqnarray}$
⑥$y$は$x$に反比例し、$x = - 4a$のとき、$y = 3$です。
$x = 2$のときの$y$の値を求めなさい。
⑦中学生12人が、あるゲームを行いました。
左下の資料1は、そのゲームの得点を示したものです。
この資料の中央値(メジアン)と分布の範囲をそれぞれ求めなさい。
⑧半径が8cm、弧の長さが4匹cmのおうぎ形の面積を求めなさい。
ただし、円周率は$\pi$とする。
⑨ある2けたの自然数は、十の位の数と一の位の数の和が10で、
十の位の数と一の位の数の積が21です。
この2けたの自然数として考えられる数をすべて求めなさい。
⑩右の図のような三角柱$ABC-DEF$があります。
点$G$は辺$AD$の中点です。
三角柱$ABC-DEF$の体積は三角錐$G-DEF$の体積の何倍ですか。
図は動画内参照
我が強いあなたの勉強法~「素直さ」と「ワガママさ」を両立させる方法~京大模試全国一位の勉強法【篠原好】

単元:
#計算と数の性質#その他#勉強法
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
「素直さ」と「ワガママさ」を両立させる方法
「我が強い人の勉強法」についてお話しています。
この動画を見る
「素直さ」と「ワガママさ」を両立させる方法
「我が強い人の勉強法」についてお話しています。
【テスト対策 中1】6章-8

単元:
#数学(中学生)#中1数学#立体図形#体積・表面積・回転体・水量・変化のグラフ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の図形を辺$AD$を軸として1回転させてできる
立体の体積と表面積を求めなさい。
図は動画内参照
この動画を見る
◎次の図形を辺$AD$を軸として1回転させてできる
立体の体積と表面積を求めなさい。
図は動画内参照
【テスト対策 中1】6章-4

単元:
#数学(中学生)#中1数学#空間図形#立体図形#立体切断
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の立体の表面積を求めなさい。
①正四角錐
②円柱
③円錐
この動画を見る
◎次の立体の表面積を求めなさい。
①正四角錐
②円柱
③円錐
【テスト対策 中1】5章-3

単元:
#平面図形#角度と面積
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①下の図1のように$∠AOB$がある。
辺$OB$に点$C$で接し、辺$OA$に接する円を定規とコンパスを使って作図しなさい。
②下の図2で、直線$\ell$に点$A$で接し、点$B$を通る円の中心$P$を作図しなさい。
図は動画内参照
この動画を見る
①下の図1のように$∠AOB$がある。
辺$OB$に点$C$で接し、辺$OA$に接する円を定規とコンパスを使って作図しなさい。
②下の図2で、直線$\ell$に点$A$で接し、点$B$を通る円の中心$P$を作図しなさい。
図は動画内参照
【テスト対策 中1】4章-2

単元:
#算数(中学受験)#文章題#単位・比と割合・比例・反比例
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①$y$は$x$に比例し、$x = 3$のとき、$y=-12$である。
$x、y$の関係を式に表しなさい。
②$y$は$x$に比例し、$x=-4$のとき、$ y = 10$である。
$x=6$のときの$y$の値を求めなさい。
③$y$は$x$に反比例し、$x=6$のとき、$y = 2$である。
$y$を$x$の式で表しなさい。
④$y$は$x$に反比例し、$ x = - 8$のとき、$y =\dfrac{5}{2}$ である。
$x=4$のときの$y$の値を求めなさい。
この動画を見る
①$y$は$x$に比例し、$x = 3$のとき、$y=-12$である。
$x、y$の関係を式に表しなさい。
②$y$は$x$に比例し、$x=-4$のとき、$ y = 10$である。
$x=6$のときの$y$の値を求めなさい。
③$y$は$x$に反比例し、$x=6$のとき、$y = 2$である。
$y$を$x$の式で表しなさい。
④$y$は$x$に反比例し、$ x = - 8$のとき、$y =\dfrac{5}{2}$ である。
$x=4$のときの$y$の値を求めなさい。
【テスト対策 中2】4章-4

単元:
#数学(中学生)#中1数学#角度と面積#平面図形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
右の図のような図形について、次の各問に答えなさい。
①$\angle a+\angle b+\angle c+\angle d+\angle e$を求めなさい。
② ①を証明しなさい。ただし、解答欄の図に頂点や角度を
書き込んでよいものとする。(例:頂点$F,\angle F$)$
図は動画内参照
この動画を見る
右の図のような図形について、次の各問に答えなさい。
①$\angle a+\angle b+\angle c+\angle d+\angle e$を求めなさい。
② ①を証明しなさい。ただし、解答欄の図に頂点や角度を
書き込んでよいものとする。(例:頂点$F,\angle F$)$
図は動画内参照
【テスト対策 中2】4章-3

単元:
#数学(中学生)#中2数学#角度と面積#三角形と四角形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
次の図①~④で、$\angle x$の大きさを求めなさい。
図は動画内参照
この動画を見る
次の図①~④で、$\angle x$の大きさを求めなさい。
図は動画内参照
【テスト対策・中2】2章-4

単元:
#文章題#単位・比と割合・比例・反比例#文章題その他
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①ある工場で,先月は,製品$A$と$B$をあわせて1000個つくりました.
今月は,先月とくらべて,$A$を10%多く,$B$を20%少なくつくったところ,
あわせて95個少なくなりました.
先月つくった製品$A,B$の個数を,それぞれ求めなさい.
②水そうに,毎分50Lの割合で常に水を入れる.
この水そうから2種類のポンプ$A,B$を使って水をくみ出す.
$A2$台と$B1$台で水をくみ出すと,
8時に200人だった水そうの水が,8時5分に300人になった.
そこで,すぐに$A3$台と$B1$台を追加したところ,
8時15分に水そうの水は 80Lになった.
$A,B$はそれぞれ1台あたり毎分$xL$,$yL$の割合で水をくみ出すとして,
$x,y$の値を求めなさい.
この動画を見る
①ある工場で,先月は,製品$A$と$B$をあわせて1000個つくりました.
今月は,先月とくらべて,$A$を10%多く,$B$を20%少なくつくったところ,
あわせて95個少なくなりました.
先月つくった製品$A,B$の個数を,それぞれ求めなさい.
②水そうに,毎分50Lの割合で常に水を入れる.
この水そうから2種類のポンプ$A,B$を使って水をくみ出す.
$A2$台と$B1$台で水をくみ出すと,
8時に200人だった水そうの水が,8時5分に300人になった.
そこで,すぐに$A3$台と$B1$台を追加したところ,
8時15分に水そうの水は 80Lになった.
$A,B$はそれぞれ1台あたり毎分$xL$,$yL$の割合で水をくみ出すとして,
$x,y$の値を求めなさい.
【テスト対策・中1】2章-4

単元:
#文章題#平均算・過不足算・差集め算・消去算#文章題その他
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①右の図のように棒を使って正方形を左から右へ順につくっていく.
正方形を$n$個つくるには,棒は何本必要か.
その本数を$n$を使った式で表せ.
②1辺に同じ個数の石を並べて,右の図Ⅱのような正三角形の形をつくる.
1辺に$x$個の石を並べるとき,必要な石の個数を$x$を使った式で表せ.
図は動画内参照
この動画を見る
①右の図のように棒を使って正方形を左から右へ順につくっていく.
正方形を$n$個つくるには,棒は何本必要か.
その本数を$n$を使った式で表せ.
②1辺に同じ個数の石を並べて,右の図Ⅱのような正三角形の形をつくる.
1辺に$x$個の石を並べるとき,必要な石の個数を$x$を使った式で表せ.
図は動画内参照
【テスト対策・中1】2章-2

単元:
#文章題#文章題その他
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
次の数量の関係を,等式か不等式に表しなさい.
①あめを1人7個ずつ$a$人に配ると,60個ではたりない.
②1000円で,$x$円の品物を3個と$y$円の品物を1個買うことができた.
③兄は0円,弟は$b$円持っていたが,兄が弟に$C$円渡したので,
2人の所持金が同じになった.
④底辺の長さが$6cm$,高さが$xcm$の三角形の面積は$ycm^2$以下である。
この動画を見る
次の数量の関係を,等式か不等式に表しなさい.
①あめを1人7個ずつ$a$人に配ると,60個ではたりない.
②1000円で,$x$円の品物を3個と$y$円の品物を1個買うことができた.
③兄は0円,弟は$b$円持っていたが,兄が弟に$C$円渡したので,
2人の所持金が同じになった.
④底辺の長さが$6cm$,高さが$xcm$の三角形の面積は$ycm^2$以下である。
【テスト対策・中1】2章-1

単元:
#文章題#平均算・過不足算・差集め算・消去算#文章題その他
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①2000円の$a$%は何円か.$a$を使った式で表しなさい.
②縦が$x$cm,横が縦より3cm長い長方形の周の長さを,
$x$を用いた式で表しなさい.
③1個$a$kgの荷物3個と,1個$b$kgの荷物5個がある.
これらの荷物の1個あたりの平均の重さを$a,b$を用いた式で表しなさい.
④十の位が9,一の位が$y$である2桁の自然数を$y$を用いた式で表しなさい.
この動画を見る
①2000円の$a$%は何円か.$a$を使った式で表しなさい.
②縦が$x$cm,横が縦より3cm長い長方形の周の長さを,
$x$を用いた式で表しなさい.
③1個$a$kgの荷物3個と,1個$b$kgの荷物5個がある.
これらの荷物の1個あたりの平均の重さを$a,b$を用いた式で表しなさい.
④十の位が9,一の位が$y$である2桁の自然数を$y$を用いた式で表しなさい.
【高校受験対策】数学-死守26

単元:
#数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#数と式#確率#円#一次不等式(不等式・絶対値のある方程式・不等式)#文章題#文章題その他
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①$-3+8$を計算しなさい.
②$2(2x - y) - (x - y)$を計算しなさい.
③$\sqrt{27}-\sqrt{63}$を計算しなさい.
④$(x + 5)(x - 3)$を展開しなさい.
⑤$a(b + 8) - (b + 8)$を因数分解しなさい.
⑥2次方程式 $x ^ 2 + x = 3$を解きなさい.
⑦右の図1の円$O$において,
$\angle x$と$\angle y$の大きさをそれぞれ求めなさい.
⑧鉛筆1本の値段を$a$円,ノート1冊の値段を$b$円とする.
「鉛筆3本とノート1冊の代金を払うと,
300円でおつりがもらえた」という数量の関係を,
不等式で表しなさい.ただし,値段は税込みとする.
⑨箱の中に,25本の当たりを含むたくさんのくじが入っている.
このくじをよくかき混ぜた後,48人がこの箱から1人1回ずつくじを引いたところ,
当たりが2本出た.箱の中に最初に入っていたくじの本数は,
およそ何本であったと推定できるか,求めなさい.
⑩ある水族館の入館料は,おとな3人と子ども2人で入ると4020円かかり,
おとな1人と子ども3人で入ると2600円かかる.
おとな1人,子ども1人の入館料をそれぞれ求めなさい.
ただし,入館料は税込みとする.
図は動画内参照
この動画を見る
①$-3+8$を計算しなさい.
②$2(2x - y) - (x - y)$を計算しなさい.
③$\sqrt{27}-\sqrt{63}$を計算しなさい.
④$(x + 5)(x - 3)$を展開しなさい.
⑤$a(b + 8) - (b + 8)$を因数分解しなさい.
⑥2次方程式 $x ^ 2 + x = 3$を解きなさい.
⑦右の図1の円$O$において,
$\angle x$と$\angle y$の大きさをそれぞれ求めなさい.
⑧鉛筆1本の値段を$a$円,ノート1冊の値段を$b$円とする.
「鉛筆3本とノート1冊の代金を払うと,
300円でおつりがもらえた」という数量の関係を,
不等式で表しなさい.ただし,値段は税込みとする.
⑨箱の中に,25本の当たりを含むたくさんのくじが入っている.
このくじをよくかき混ぜた後,48人がこの箱から1人1回ずつくじを引いたところ,
当たりが2本出た.箱の中に最初に入っていたくじの本数は,
およそ何本であったと推定できるか,求めなさい.
⑩ある水族館の入館料は,おとな3人と子ども2人で入ると4020円かかり,
おとな1人と子ども3人で入ると2600円かかる.
おとな1人,子ども1人の入館料をそれぞれ求めなさい.
ただし,入館料は税込みとする.
図は動画内参照
【高校受験対策】数学-死守25

単元:
#数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#2次方程式#円#文章題#文章題その他#表とグラフ#表とグラフ・集合#三角形と四角形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①$-4-8$を計算しなさい.
②$\dfrac{1}{3}-\dfrac{3}{7}$を計算しなさい.
③$\sqrt{50}-\sqrt{32}$を計算しなさい.
④2次方程式$x^ 2 - 5x + 2 = 0$を解きなさい.
⑤図1のように,四角形$ABCD$の3つの頂点における外角が
わかっているとき,$\angle x$の大きさを求めなさい.
⑥図2のような半径$6cm$の半球の表面積と体積を求めなさい.
ただし,円周率は$\pi$とする.
⑦右の表は,あるクラスの1日の家庭での学習時間を
度数分布表にまとめたものである.
この表から$\Box$にあてはまる数と最頻値(モード) を求めなさい.
⑧ある家庭では,昨年1月の電気代と水道代の1日当たりの合計額は530円だった.
その後,家族で節電・節水を心がけたため,今年1月の1日当たりの額は,
昨年1月と比較して電気代は15%,水道代は10%減り,
1日当たりの合計額は460円となった.
昨年1月の1日当たりの電気代と水道代はそれぞれ何円か,求めなさい.
図は動画内参照
この動画を見る
①$-4-8$を計算しなさい.
②$\dfrac{1}{3}-\dfrac{3}{7}$を計算しなさい.
③$\sqrt{50}-\sqrt{32}$を計算しなさい.
④2次方程式$x^ 2 - 5x + 2 = 0$を解きなさい.
⑤図1のように,四角形$ABCD$の3つの頂点における外角が
わかっているとき,$\angle x$の大きさを求めなさい.
⑥図2のような半径$6cm$の半球の表面積と体積を求めなさい.
ただし,円周率は$\pi$とする.
⑦右の表は,あるクラスの1日の家庭での学習時間を
度数分布表にまとめたものである.
この表から$\Box$にあてはまる数と最頻値(モード) を求めなさい.
⑧ある家庭では,昨年1月の電気代と水道代の1日当たりの合計額は530円だった.
その後,家族で節電・節水を心がけたため,今年1月の1日当たりの額は,
昨年1月と比較して電気代は15%,水道代は10%減り,
1日当たりの合計額は460円となった.
昨年1月の1日当たりの電気代と水道代はそれぞれ何円か,求めなさい.
図は動画内参照
【高校受験対策】数学-死守24

単元:
#数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#円#立体図形#立体切断#立体図形その他#表とグラフ#表とグラフ・集合
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①$-7+9$を計算しなさい.
②$1+\left(-\dfrac{5}{6}\right)\div \dfrac{1}{3}$を計算しなさい.
③$8(x - y) + 6(x - 2y)$を計算しなさい.
④$\sqrt{27} - \dfrac{6}{\sqrt3}$を計算しなさい.
⑤$x(x + 2) - (x + 4)(x - 3)$を計算しなさい.
⑥絶対値が$2.5$より小さい整数はいくつあるか,求めなさい.
⑦2つの方程式$3x + y = 11$と$x + 3y = 1$両方にあてはまる$x,y$の値の組がある.
このとき,$x^2-y^2$の値を求めなさい.
⑧右の図のおうぎ形$OAB$は,半径$3cm$,中心角$90°$である.
このおうぎ形$OAB$を, $AD$を通る直線$\ell$を軸として1回転させてできる
立体の体積と表面積を求めなさい.
ただし,円周率は$\pi$とする.
⑨右の表は,ある中学校における男子15人の50m走の記録を
度数分布表に表したものである.
この表の8.5秒以上9.0秒未満の階級の相対度数を求めなさい.
図は動画内参照
この動画を見る
①$-7+9$を計算しなさい.
②$1+\left(-\dfrac{5}{6}\right)\div \dfrac{1}{3}$を計算しなさい.
③$8(x - y) + 6(x - 2y)$を計算しなさい.
④$\sqrt{27} - \dfrac{6}{\sqrt3}$を計算しなさい.
⑤$x(x + 2) - (x + 4)(x - 3)$を計算しなさい.
⑥絶対値が$2.5$より小さい整数はいくつあるか,求めなさい.
⑦2つの方程式$3x + y = 11$と$x + 3y = 1$両方にあてはまる$x,y$の値の組がある.
このとき,$x^2-y^2$の値を求めなさい.
⑧右の図のおうぎ形$OAB$は,半径$3cm$,中心角$90°$である.
このおうぎ形$OAB$を, $AD$を通る直線$\ell$を軸として1回転させてできる
立体の体積と表面積を求めなさい.
ただし,円周率は$\pi$とする.
⑨右の表は,ある中学校における男子15人の50m走の記録を
度数分布表に表したものである.
この表の8.5秒以上9.0秒未満の階級の相対度数を求めなさい.
図は動画内参照
【高校受験対策】数学-死守23

単元:
#数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#2次方程式#確率#立体図形#立体切断#立体図形その他#三角形と四角形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①$-5-(-9)$を計算せよ.
②$- 2 ^ 2 \times 3$を計算せよ.
③$xy ^ 2 \times 6y \div 3xy$を計算せよ.
④$(x - 7)(x - 4) + 8x$を計算せよ.
⑤1次方程式$x + 4 = 5(2x - 1)$を解け.
⑥2次方程式$x ^ 2 + 3x - 18 = 0$を解け.
⑦$2\lt \sqrt a \lt \dfrac{10}{3}$をみたす正の整数のは何個あるか.
⑧図1で,2直線$\ell,m$は平行であり,
$\triangle ABC$は$AB = AC$の二等辺三角形である.
また,頂点$A,C$はそれぞれ $\ell m$上にある.
$\angle x$の大きさを求めよ.
⑨図2は,底面の半径が$3cm$,母線の長さが$ 9cm$の円すいである.
この円すいの体積を求めよ.ただし,円周率は$\pi$とする.
⑩図3は,女子生徒20人のハンドボール投げの記録をヒストグラムに表したもので,
平均値は12.2mであった.
このヒストグラムから読み取れることについて述べた次のア~エのうち,
正しいものをすべて選び,その記号を書け.
ア 中央値 (メジアン) は,平均値よりも小さい.
イ 最頻値(モード)は,平均値よりも大きい.
ウ 記録が12m未満の生徒は,全体の半数以上である.
工 記録が16m以上の生徒は,全体の20%である.
⑪図4で,数直線上を動く点$P$は,最初,原点$O$にある.
点$P$は,1枚の硬貨を1回投げるごとに,表が出れば正の方向に2だけ移動し,
裏が出れば負の方向に1だけ移動する.
硬貨を3回投げて移動した結果,点$P$が原点$O$にある確率を求めよ.
図は動画内参照
この動画を見る
①$-5-(-9)$を計算せよ.
②$- 2 ^ 2 \times 3$を計算せよ.
③$xy ^ 2 \times 6y \div 3xy$を計算せよ.
④$(x - 7)(x - 4) + 8x$を計算せよ.
⑤1次方程式$x + 4 = 5(2x - 1)$を解け.
⑥2次方程式$x ^ 2 + 3x - 18 = 0$を解け.
⑦$2\lt \sqrt a \lt \dfrac{10}{3}$をみたす正の整数のは何個あるか.
⑧図1で,2直線$\ell,m$は平行であり,
$\triangle ABC$は$AB = AC$の二等辺三角形である.
また,頂点$A,C$はそれぞれ $\ell m$上にある.
$\angle x$の大きさを求めよ.
⑨図2は,底面の半径が$3cm$,母線の長さが$ 9cm$の円すいである.
この円すいの体積を求めよ.ただし,円周率は$\pi$とする.
⑩図3は,女子生徒20人のハンドボール投げの記録をヒストグラムに表したもので,
平均値は12.2mであった.
このヒストグラムから読み取れることについて述べた次のア~エのうち,
正しいものをすべて選び,その記号を書け.
ア 中央値 (メジアン) は,平均値よりも小さい.
イ 最頻値(モード)は,平均値よりも大きい.
ウ 記録が12m未満の生徒は,全体の半数以上である.
工 記録が16m以上の生徒は,全体の20%である.
⑪図4で,数直線上を動く点$P$は,最初,原点$O$にある.
点$P$は,1枚の硬貨を1回投げるごとに,表が出れば正の方向に2だけ移動し,
裏が出れば負の方向に1だけ移動する.
硬貨を3回投げて移動した結果,点$P$が原点$O$にある確率を求めよ.
図は動画内参照
【高校受験対策】数学-死守22

単元:
#数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#確率#立体図形#立体切断#立体図形その他
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①$1-(-3)$を計算しなさい.
②$2a+\dfrac{a}{3}$を計算しなさい.
③$4(2x - y) - 3(x + y) $を計算しなさい.
④$(3x+1)^2$展開しなさい.
⑤$4a^2-12ab$を因数分解しなさい.
⑥連立方程式$\begin{eqnarray}
\left\{
\begin{array}{l}
2x+y=4 \\
4x-3y=18
\end{array}
\right.
\end{eqnarray}$を解きなさい.
⑦七角形の内角の和を求めなさい.
⑧2次方程式$x ^ 2 + x - 12 = 0$を解きなさい.
⑨$\sqrt2 \lt x \lt \sqrt{19}$を満たす$x$を,小さい順にすべて書きなさい.
⑩右の図は,立体図の展開図である.
この展開図を組み立てて立方体をつくるとき,
面アと垂直になる面を,面イ~カからすべて選び,記号で答えなさい.
⑪$1,2,3,4,5$の数字を1つずつ記入した5枚のカードがある.
このカードをよくきってから1枚ずつ2回続けて引き,
引いた順に左から並べて2けたの整数をつくる.
このとき,できた2けたの整数が4の倍数である確率を求めなさい.
図は動画内参照
この動画を見る
①$1-(-3)$を計算しなさい.
②$2a+\dfrac{a}{3}$を計算しなさい.
③$4(2x - y) - 3(x + y) $を計算しなさい.
④$(3x+1)^2$展開しなさい.
⑤$4a^2-12ab$を因数分解しなさい.
⑥連立方程式$\begin{eqnarray}
\left\{
\begin{array}{l}
2x+y=4 \\
4x-3y=18
\end{array}
\right.
\end{eqnarray}$を解きなさい.
⑦七角形の内角の和を求めなさい.
⑧2次方程式$x ^ 2 + x - 12 = 0$を解きなさい.
⑨$\sqrt2 \lt x \lt \sqrt{19}$を満たす$x$を,小さい順にすべて書きなさい.
⑩右の図は,立体図の展開図である.
この展開図を組み立てて立方体をつくるとき,
面アと垂直になる面を,面イ~カからすべて選び,記号で答えなさい.
⑪$1,2,3,4,5$の数字を1つずつ記入した5枚のカードがある.
このカードをよくきってから1枚ずつ2回続けて引き,
引いた順に左から並べて2けたの整数をつくる.
このとき,できた2けたの整数が4の倍数である確率を求めなさい.
図は動画内参照
【高校受験対策】数学-死守21

単元:
#数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#円#文章題#文章題その他#立体図形#体積・表面積・回転体・水量・変化のグラフ#表とグラフ#表とグラフ・集合
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①$7-(-5)$を計算しなさい.
②$(- 4) ^ 2 + 3 \times (- 2)$を計算しなさい.
③$\dfrac{3}{2} - 6y - \dfrac{1}{4} (3x-8y)$を計算しなさい.
④比例式$ 2:5 = (x - 2):(x + 7)$をみたす$x$の値を求めなさい.
⑤$\sqrt{45} - \sqrt{20} + \dfrac{15}{\sqrt5}$ を計算しなさい.
⑥$(x + 1)(x - 7) - 20$を因数分解しなさい.
⑦$a$の本の鉛筆を,$b$人の子どもに1人7本ずっ配ると3本余るとき,
$b$を$a$の式で表しなさい.
⑧ 右の図で,5点$A,B,C,D,E$は円$O$の円周上にあり,
$\angle BAC = 24°,\angle CED = 38°$,
$\stackrel{\huge\frown}{CD}=\stackrel{\huge\frown}{DE}$である.
線分$BD$と線分$CE$の交点を$F$とするとき,$\angle CFD$の大きさを求めなさい.
⑨下の表には,6人の生徒$A~F$のそれぞれの身長から,
160cmをひいた値が示されている/
この表をもとに,これら6人の生徒の身長の平均を求めたところ161.5cmであった.
このとき,生徒$F$の身長を求めなさい.
⑩半径が3cmの球と体積の等しい円柱がある.
この円柱の底面の半径が4cmのとき,円柱の高さを求めなさい.
図は動画内参照
この動画を見る
①$7-(-5)$を計算しなさい.
②$(- 4) ^ 2 + 3 \times (- 2)$を計算しなさい.
③$\dfrac{3}{2} - 6y - \dfrac{1}{4} (3x-8y)$を計算しなさい.
④比例式$ 2:5 = (x - 2):(x + 7)$をみたす$x$の値を求めなさい.
⑤$\sqrt{45} - \sqrt{20} + \dfrac{15}{\sqrt5}$ を計算しなさい.
⑥$(x + 1)(x - 7) - 20$を因数分解しなさい.
⑦$a$の本の鉛筆を,$b$人の子どもに1人7本ずっ配ると3本余るとき,
$b$を$a$の式で表しなさい.
⑧ 右の図で,5点$A,B,C,D,E$は円$O$の円周上にあり,
$\angle BAC = 24°,\angle CED = 38°$,
$\stackrel{\huge\frown}{CD}=\stackrel{\huge\frown}{DE}$である.
線分$BD$と線分$CE$の交点を$F$とするとき,$\angle CFD$の大きさを求めなさい.
⑨下の表には,6人の生徒$A~F$のそれぞれの身長から,
160cmをひいた値が示されている/
この表をもとに,これら6人の生徒の身長の平均を求めたところ161.5cmであった.
このとき,生徒$F$の身長を求めなさい.
⑩半径が3cmの球と体積の等しい円柱がある.
この円柱の底面の半径が4cmのとき,円柱の高さを求めなさい.
図は動画内参照
【高校受験対策】数学-死守20

単元:
#数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#数と式#比例・反比例#確率#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#単位・比と割合・比例・反比例
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①$(-2)+11$を計算しなさい.
②$(- 4) ^ 2 \times (- 3)$を計算しなさい.
③$(6a - 15b) \div 3$を計算しなさい.
④$(2x - 1)(x + 3)$を展開しなさい.
⑤$x ^ 2 - (y + 3) ^ 2$ を因数分解しなさい.
⑥方程式$\dfrac{x - 2}{4} + \dfrac{2 - 5x}{6} = 1$を解きなさい.
⑦$y$は$x$に反比例し,$x = 2$ のとき $y = - 3$ である.
このとき,$y$を$x$の式で表しなさい.
⑧次のア~オの中から,無理数をすべて選び,記号で答えなさい.
ア.$\dfrac{1}{3}$
イ.$\sqrt5$
ウ.$0.25$
エ.$-2\sqrt3$
オ.$\sqrt6$
⑨右の図のア~エは,関数$y = ax ^ 2$のグラフである.
次の(1),(2)の問いに答えなさい.
(1)関数$y=\dfrac{1}{2}x^2$のグラフを,ア~エから選びなさい.
(2)$x$の値が$-2$から$-1$まで増加するときの
変化の割合が最も大きい関数のグラフを,ア~エから選びなさい.
また,そのときの変化の割合を求めなさい.
⑩袋の中に$0,1,2,3$の数字が1つずつ書かれた4個の玉が入っている.
この袋から玉を1個取り出して玉に書かれた数字を確認して,
それを袋の中にもどしてから,また1個取り出すとき,
(1)取り出した2個の玉に書かれていた数字が同じになる確率を求めなさい.
(2)次の$\Box$に適することばを入れて,
求める確率が$\dfrac{1}{4}$となる問題を1つ完成させなさい.
「取り出した2個の玉の数字の積が$\Box$になる確率を求めなさい.」
図は動画内参照
この動画を見る
①$(-2)+11$を計算しなさい.
②$(- 4) ^ 2 \times (- 3)$を計算しなさい.
③$(6a - 15b) \div 3$を計算しなさい.
④$(2x - 1)(x + 3)$を展開しなさい.
⑤$x ^ 2 - (y + 3) ^ 2$ を因数分解しなさい.
⑥方程式$\dfrac{x - 2}{4} + \dfrac{2 - 5x}{6} = 1$を解きなさい.
⑦$y$は$x$に反比例し,$x = 2$ のとき $y = - 3$ である.
このとき,$y$を$x$の式で表しなさい.
⑧次のア~オの中から,無理数をすべて選び,記号で答えなさい.
ア.$\dfrac{1}{3}$
イ.$\sqrt5$
ウ.$0.25$
エ.$-2\sqrt3$
オ.$\sqrt6$
⑨右の図のア~エは,関数$y = ax ^ 2$のグラフである.
次の(1),(2)の問いに答えなさい.
(1)関数$y=\dfrac{1}{2}x^2$のグラフを,ア~エから選びなさい.
(2)$x$の値が$-2$から$-1$まで増加するときの
変化の割合が最も大きい関数のグラフを,ア~エから選びなさい.
また,そのときの変化の割合を求めなさい.
⑩袋の中に$0,1,2,3$の数字が1つずつ書かれた4個の玉が入っている.
この袋から玉を1個取り出して玉に書かれた数字を確認して,
それを袋の中にもどしてから,また1個取り出すとき,
(1)取り出した2個の玉に書かれていた数字が同じになる確率を求めなさい.
(2)次の$\Box$に適することばを入れて,
求める確率が$\dfrac{1}{4}$となる問題を1つ完成させなさい.
「取り出した2個の玉の数字の積が$\Box$になる確率を求めなさい.」
図は動画内参照
【高校受験対策】数学-死守19

単元:
#数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#2次方程式#比例・反比例#確率#文章題#文章題その他#標本調査
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①$8-(-13)$を計算しなさい.
②$(- 3) ^ 2 + \left(-\dfrac{1}{3}\right)\times 6$ を計算しなさい.
③$(7a - 4b) + \dfrac{1}{2}(2b - 6a)$ を計算しなさい.
④方程式$ 0.2(x - 2) = x + 1.2$ を解きなさい.
⑤$\sqrt{48}-\sqrt{27}+5\sqrt3$を計算しなさい.
⑥二次方程式$x ^ 2 + 7x + 5 = 0 $を解きなさい.
⑦$y$は$x$の2乗に比例し,
$ x = 2 $のとき,$y=1$である.
$y$を$x$の式で表しなさい.
⑧右の資料は,ある生徒が受けた第1回から第6回までの数学のテストの得点の記録のうち,
第1回から第5回までの得点の記録である.
第1回から第6回までの得点の中央値が80点となるとき,
第6回のテストの得点を求めなさい.
$\boxed{83 \quad 78\quad 74\quad 77 \quad 96}$ (単位:点)
⑨$m$と$n$は連続する正の整数である.
次のア~エのうちから,次の値が偶数となるものを一つ選び,
符号で答えなさい.ただし,$m \lt n$とする.
ア.$m+n$
イ.$n-m$
ウ.m + n + 2$
エ.$mn$
⑩箱の中に同じ大きさの白い球だけがたくさん入っている.
この白い球が何個あるか,標本調査を行って推測しょうと考えた.
そこでオレンジ色の球200個を箱に入れてよくかき混ぜ,
そこから50個を無作為に抽出したところ,
オレンジ色の球が4個含まれていた.
はじめに箱の中に入っていた白い球の個数を推測しなさい
①箱の中に$②,③,④,⑥,⑧,⑨$のカードがそれぞれ1枚ずつ入っている.
この箱から同時に2枚取り出すとき,
取り出した2枚のカードに書かれた数の最小公倍数が,
1桁の数になる確率を求めなさい.
ただし,どのカードの取り出し方も同様に確からしいものとする.
この動画を見る
①$8-(-13)$を計算しなさい.
②$(- 3) ^ 2 + \left(-\dfrac{1}{3}\right)\times 6$ を計算しなさい.
③$(7a - 4b) + \dfrac{1}{2}(2b - 6a)$ を計算しなさい.
④方程式$ 0.2(x - 2) = x + 1.2$ を解きなさい.
⑤$\sqrt{48}-\sqrt{27}+5\sqrt3$を計算しなさい.
⑥二次方程式$x ^ 2 + 7x + 5 = 0 $を解きなさい.
⑦$y$は$x$の2乗に比例し,
$ x = 2 $のとき,$y=1$である.
$y$を$x$の式で表しなさい.
⑧右の資料は,ある生徒が受けた第1回から第6回までの数学のテストの得点の記録のうち,
第1回から第5回までの得点の記録である.
第1回から第6回までの得点の中央値が80点となるとき,
第6回のテストの得点を求めなさい.
$\boxed{83 \quad 78\quad 74\quad 77 \quad 96}$ (単位:点)
⑨$m$と$n$は連続する正の整数である.
次のア~エのうちから,次の値が偶数となるものを一つ選び,
符号で答えなさい.ただし,$m \lt n$とする.
ア.$m+n$
イ.$n-m$
ウ.m + n + 2$
エ.$mn$
⑩箱の中に同じ大きさの白い球だけがたくさん入っている.
この白い球が何個あるか,標本調査を行って推測しょうと考えた.
そこでオレンジ色の球200個を箱に入れてよくかき混ぜ,
そこから50個を無作為に抽出したところ,
オレンジ色の球が4個含まれていた.
はじめに箱の中に入っていた白い球の個数を推測しなさい
①箱の中に$②,③,④,⑥,⑧,⑨$のカードがそれぞれ1枚ずつ入っている.
この箱から同時に2枚取り出すとき,
取り出した2枚のカードに書かれた数の最小公倍数が,
1桁の数になる確率を求めなさい.
ただし,どのカードの取り出し方も同様に確からしいものとする.
【高校受験対策】数学-死守14

単元:
#数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#2次方程式#2次関数#円#表とグラフ#表とグラフ・集合#三角形と四角形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
次の各問いに答えなさい.
①$(2x - 1) - 5(x + 1)$ を計算しなさい.
②1次方程式$x-6=\dfrac{x}{4}$を計算しなさい.
③ $(- 6ab)^2 \div (- 9ab^2)$を計算しなさい.
④連立方程式を解きなさい.
$\begin{eqnarray}
\left\{
\begin{array}{l}
2x+3y=10 \\
4x-y=-8
\end{array}
\right.
\end{eqnarray}$
⑤$(2\sqrt{10}- 5)(\sqrt{10} + 4)$を計算しなさい.
⑥2次方程式 $2x^2 - 3x - 1 = 0$を解きなさい.
⑦関数$y=2x^2$について,$x$の変域が$a\leqq x\leqq 1$のとき,
$y$の変域は$0\leqq y \leqq 18$である.
このとき,$a$の値を答えなさい.
⑧図1のように,$△ABC$の2辺$AB,AC$上にそれぞれ,
点$D,E$があり,$DE /\!/ BC$である.
$BC = 8cm,△ADE$と$△ABC$の面積の比が$9:16$のとき,
線分$DE$の長さを答えなさい.
⑨図2のように,円$O$の円周上に4つの点$A,B,C,D$があり,
線分$AC$は円$O$の直径である.
$\angle DAC=55°$であるとき,$\angle x$の大きさを答えなさい.
⑩右の表は,生徒37人の最近1か月間に読んだ本の冊数を調べ,
度数分布表にまとめたものである.
このとき,冊数の中央値と最頻値を,それぞれ答えなさい.
また,冊数の平均値を,小数第2位を四捨五入して,
小数第1位まで答えなさい.
図は動画内を参照
この動画を見る
次の各問いに答えなさい.
①$(2x - 1) - 5(x + 1)$ を計算しなさい.
②1次方程式$x-6=\dfrac{x}{4}$を計算しなさい.
③ $(- 6ab)^2 \div (- 9ab^2)$を計算しなさい.
④連立方程式を解きなさい.
$\begin{eqnarray}
\left\{
\begin{array}{l}
2x+3y=10 \\
4x-y=-8
\end{array}
\right.
\end{eqnarray}$
⑤$(2\sqrt{10}- 5)(\sqrt{10} + 4)$を計算しなさい.
⑥2次方程式 $2x^2 - 3x - 1 = 0$を解きなさい.
⑦関数$y=2x^2$について,$x$の変域が$a\leqq x\leqq 1$のとき,
$y$の変域は$0\leqq y \leqq 18$である.
このとき,$a$の値を答えなさい.
⑧図1のように,$△ABC$の2辺$AB,AC$上にそれぞれ,
点$D,E$があり,$DE /\!/ BC$である.
$BC = 8cm,△ADE$と$△ABC$の面積の比が$9:16$のとき,
線分$DE$の長さを答えなさい.
⑨図2のように,円$O$の円周上に4つの点$A,B,C,D$があり,
線分$AC$は円$O$の直径である.
$\angle DAC=55°$であるとき,$\angle x$の大きさを答えなさい.
⑩右の表は,生徒37人の最近1か月間に読んだ本の冊数を調べ,
度数分布表にまとめたものである.
このとき,冊数の中央値と最頻値を,それぞれ答えなさい.
また,冊数の平均値を,小数第2位を四捨五入して,
小数第1位まで答えなさい.
図は動画内を参照
【高校受験対策】数学-図形13

単元:
#数学(中学生)#中1数学#空間図形#立体図形#立体図形その他
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
右の図のような,底面の直径$AB$が$6cm$,
母線の長さが$6cm$の円錐で,母線$OB$の中点を$P$とします.
このとき,次の各問いに答えなさい.
①点$A$から$B$まで,側面上を半周してひもをかけます.
ひもの長さが最短になるときのひもの長さを求めなさい.
②点$A$から$P$まで,側面上を半周してひもをかけます.
ひもの長さが最短になるときのひもの長さを求めなさい.
図は動画内を参照
この動画を見る
右の図のような,底面の直径$AB$が$6cm$,
母線の長さが$6cm$の円錐で,母線$OB$の中点を$P$とします.
このとき,次の各問いに答えなさい.
①点$A$から$B$まで,側面上を半周してひもをかけます.
ひもの長さが最短になるときのひもの長さを求めなさい.
②点$A$から$P$まで,側面上を半周してひもをかけます.
ひもの長さが最短になるときのひもの長さを求めなさい.
図は動画内を参照
【高校受験対策】数学-死守13

単元:
#数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#2次方程式#確率#円#立体図形#立体図形その他#三角形と四角形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
次の各問いに答えなさい.
①$3-(-2)$を計算しなさい.
②$(-3)^2+5\times (-1)$を計算しなさい.
③$(2x^2-5x)-(3x^2-2x)$を計算しなさい.
④$(-4a^2)\times 18b \div 9ab$を計算しなさい.
⑤$(\sqrt3 + 1)^2$を計算しなさい.
⑥$x$に$-3$をかけて$5$をひいた数は$7$より小さい.
この数量の関係を不等式で表しなさい.
⑦次の連立方程式を解きなさい.
$3x+4y=x+y=2$
⑧2次方程式$(x-2)^2=81$を解きなさい.
⑨右の図で,$y$が$x$に比例するとき,
(ア)にあてはまる数を求めなさい.
⑩$1,2,3,4$の数字が書かれた4枚のカードが袋の中に入っている.
このカードを2枚同時に取り出すとき,
袋の中に残っているカードに書かれている数の和が,
取り出したカードに書かれている数の和より大きくなる確率を求めなさい.
⑪右上の図1は,底面の半径が$6cm$,母線の長さが$30cm$の円すいである.
この円すいの展開図をかいたとき,側面になるおうぎ形の中心角を求めなさい.
⑫右の図2の平行四辺形$ABCD$で,
$AB,BC$上にそれぞれ点$E,F$をとる.
$AC /\!/ EF$のとき,$△ACE$と面積が等しい三角形を3つ書きなさい.
図は動画内を参照
この動画を見る
次の各問いに答えなさい.
①$3-(-2)$を計算しなさい.
②$(-3)^2+5\times (-1)$を計算しなさい.
③$(2x^2-5x)-(3x^2-2x)$を計算しなさい.
④$(-4a^2)\times 18b \div 9ab$を計算しなさい.
⑤$(\sqrt3 + 1)^2$を計算しなさい.
⑥$x$に$-3$をかけて$5$をひいた数は$7$より小さい.
この数量の関係を不等式で表しなさい.
⑦次の連立方程式を解きなさい.
$3x+4y=x+y=2$
⑧2次方程式$(x-2)^2=81$を解きなさい.
⑨右の図で,$y$が$x$に比例するとき,
(ア)にあてはまる数を求めなさい.
⑩$1,2,3,4$の数字が書かれた4枚のカードが袋の中に入っている.
このカードを2枚同時に取り出すとき,
袋の中に残っているカードに書かれている数の和が,
取り出したカードに書かれている数の和より大きくなる確率を求めなさい.
⑪右上の図1は,底面の半径が$6cm$,母線の長さが$30cm$の円すいである.
この円すいの展開図をかいたとき,側面になるおうぎ形の中心角を求めなさい.
⑫右の図2の平行四辺形$ABCD$で,
$AB,BC$上にそれぞれ点$E,F$をとる.
$AC /\!/ EF$のとき,$△ACE$と面積が等しい三角形を3つ書きなさい.
図は動画内を参照
【高校受験対策】数学-死守11

単元:
#数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#2次方程式#円#表とグラフ#表とグラフ・集合
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
次の各問に答えなさい.
①$(-2)\times (-3)+4$を計算しなさい.
②$\dfrac{2}{5}a+\dfrac{1}{3}a$を計算しなさい.
③$4(x+2y)-(6x+9y)$を計算しなさい.
④$5xy^2\times 7xy \div (-x)^2$を計算しなさい.
⑤$(\sqrt{2}+1)^2-\sqrt8$を計算しなさい.
⑥$x$についての2次方程式$x^2+ax-12=0$の解の一つが
$-2$であるとき,もう一つの解を求めなさい.
⑦右の図1のような半径$9cm$の半球があります.
この半球と等しい体積の円錐について考えます.
円錐の底面の半径が$9cm$であるとき,円錐の高さは何$cm$か求めなさい.
⑧右の図2は,ある学校の3年生50人の通学時間を調査し,
ヒストグラムに表したもので,平均値は$16.3$分でした.
下のアから工までの中から,
このヒストグラムからわかることについて正しく述べたものを1つ選び,
記号で答えなさい.
ア 通学時間の範囲は,16分である.
イ 通学時間の最頻値は,平均値よりも大きい.
ウ 通学時間の中央値が含まれる階級は,15分以上20分未満の階級である.
工 通学時間が20分以上25分未満の階級の相対度数は,$0.16$である.
図は動画内を参照
この動画を見る
次の各問に答えなさい.
①$(-2)\times (-3)+4$を計算しなさい.
②$\dfrac{2}{5}a+\dfrac{1}{3}a$を計算しなさい.
③$4(x+2y)-(6x+9y)$を計算しなさい.
④$5xy^2\times 7xy \div (-x)^2$を計算しなさい.
⑤$(\sqrt{2}+1)^2-\sqrt8$を計算しなさい.
⑥$x$についての2次方程式$x^2+ax-12=0$の解の一つが
$-2$であるとき,もう一つの解を求めなさい.
⑦右の図1のような半径$9cm$の半球があります.
この半球と等しい体積の円錐について考えます.
円錐の底面の半径が$9cm$であるとき,円錐の高さは何$cm$か求めなさい.
⑧右の図2は,ある学校の3年生50人の通学時間を調査し,
ヒストグラムに表したもので,平均値は$16.3$分でした.
下のアから工までの中から,
このヒストグラムからわかることについて正しく述べたものを1つ選び,
記号で答えなさい.
ア 通学時間の範囲は,16分である.
イ 通学時間の最頻値は,平均値よりも大きい.
ウ 通学時間の中央値が含まれる階級は,15分以上20分未満の階級である.
工 通学時間が20分以上25分未満の階級の相対度数は,$0.16$である.
図は動画内を参照
【高校受験対策】数学-死守10

単元:
#数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#2次方程式#2次関数#文章題#文章題その他#三角形と四角形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
1.次の各問に答えなさい.
①$9a-5a$を計算しなさい.
②$12\div (-2)+1$を計算しなさい.
③$6\sqrt7-\sqrt{28}$を計算しなさい.
④$x=13$のとき,$x^2-8x+15$の値を求めなさい.
⑤2次方程式$5x^2-9x+3=0$を解きなさい.
⑥連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
3x - 2y = 7 \\
x + y = -1
\end{array}
\right.
\end{eqnarray}$を解きなさい.
⑦右の図の曲線は,$y=ax^2$のグラフです.
グラフから,$a$の値を求めなさい.
⑧上の表は,あるクイズ大会に参加した40人全員の結果をまとめたものです.
クイズの問題は,$A,B,C$の3問ありました.
正解のときに与えられた得点は,$A,B$がそれぞれ1点,$C$が3点で,
正解のとき以外は0点でした.3問のうち2問だけが正解だった人数を求めなさい.
⑨右の図1の四角形$ABCD$は,$AD /\!/ BC$の台形であり,
線分$AC$と$DB$の交点を$E$とします.
$AB=AD,\angle BAC=80° \angle ACB = 30°$のとき,
$\angle DEC$の大きさ$x$を求めなさい.
⑩右の図2は,正四角錐の投影図です.
この正四角錐の立面図は,1辺の長さが$6cm$の正三角形です.
この正四角錐の体積を求めなさい.
⑪ある菓子店では,どら焼きを6個入りの箱と8個入りの箱で販売している.
6個入りの箱と8個入りの箱の組み合わせで,
どら焼きをちょうど34個買うには,6個入りの箱と8 個入りの箱は,
それぞれ何箱になるか求めなさい.
この動画を見る
1.次の各問に答えなさい.
①$9a-5a$を計算しなさい.
②$12\div (-2)+1$を計算しなさい.
③$6\sqrt7-\sqrt{28}$を計算しなさい.
④$x=13$のとき,$x^2-8x+15$の値を求めなさい.
⑤2次方程式$5x^2-9x+3=0$を解きなさい.
⑥連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
3x - 2y = 7 \\
x + y = -1
\end{array}
\right.
\end{eqnarray}$を解きなさい.
⑦右の図の曲線は,$y=ax^2$のグラフです.
グラフから,$a$の値を求めなさい.
⑧上の表は,あるクイズ大会に参加した40人全員の結果をまとめたものです.
クイズの問題は,$A,B,C$の3問ありました.
正解のときに与えられた得点は,$A,B$がそれぞれ1点,$C$が3点で,
正解のとき以外は0点でした.3問のうち2問だけが正解だった人数を求めなさい.
⑨右の図1の四角形$ABCD$は,$AD /\!/ BC$の台形であり,
線分$AC$と$DB$の交点を$E$とします.
$AB=AD,\angle BAC=80° \angle ACB = 30°$のとき,
$\angle DEC$の大きさ$x$を求めなさい.
⑩右の図2は,正四角錐の投影図です.
この正四角錐の立面図は,1辺の長さが$6cm$の正三角形です.
この正四角錐の体積を求めなさい.
⑪ある菓子店では,どら焼きを6個入りの箱と8個入りの箱で販売している.
6個入りの箱と8個入りの箱の組み合わせで,
どら焼きをちょうど34個買うには,6個入りの箱と8 個入りの箱は,
それぞれ何箱になるか求めなさい.
