群馬大学
【高校数学】群馬大学医学部の積分の問題をその場で解説しながら解いてみた!毎日積分96日目~47都道府県制覇への道~【㊴群馬】【毎日17時投稿】
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
【群馬大学(医) 2023】
$xy$平面上において、不等式$(ye^x)^2≦(sin2x)^2, 0≦x≦π$の表す領域を$D$とし、領域$D$と直線$x=a$の共通部分の線分の長さを$l(a)$とする。以下の問に答えよ。
(1) $l(a)$が$a=a_0$で最大となるとき、$tana_0$の値を求めよ。
(2)領域$D$の面積を求めよ。
この動画を見る
【群馬大学(医) 2023】
$xy$平面上において、不等式$(ye^x)^2≦(sin2x)^2, 0≦x≦π$の表す領域を$D$とし、領域$D$と直線$x=a$の共通部分の線分の長さを$l(a)$とする。以下の問に答えよ。
(1) $l(a)$が$a=a_0$で最大となるとき、$tana_0$の値を求めよ。
(2)領域$D$の面積を求めよ。
群馬大 複素数 数列の和
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$Z=\displaystyle \frac{-1+\sqrt{ 3 }i}{2}$
$Z+2Z^2+3Z^3+4Z^4+…+19Z^{19}+20Z^{20}$
出典:群馬大学 過去問
この動画を見る
$Z=\displaystyle \frac{-1+\sqrt{ 3 }i}{2}$
$Z+2Z^2+3Z^3+4Z^4+…+19Z^{19}+20Z^{20}$
出典:群馬大学 過去問
群馬大 整数問題
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\fcolorbox{black}{}{$a$}\fcolorbox{black}{}{$b$}\fcolorbox{black}{}{$c$}\fcolorbox{black}{}{$d$}=(\fcolorbox{black}{}{$a$}\fcolorbox{black}{}{$b$}+\fcolorbox{black}{}{$c$}\fcolorbox{black}{}{$d$})^2$
出典:1978年群馬大学 過去問
この動画を見る
$\fcolorbox{black}{}{$a$}\fcolorbox{black}{}{$b$}\fcolorbox{black}{}{$c$}\fcolorbox{black}{}{$d$}=(\fcolorbox{black}{}{$a$}\fcolorbox{black}{}{$b$}+\fcolorbox{black}{}{$c$}\fcolorbox{black}{}{$d$})^2$
出典:1978年群馬大学 過去問
群馬大(医)整数問題 完全数の約数の総和 約数の逆数の総和
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$k$自然数
$2^k-1$が素数であるとする。
$a=2^{k-1}(2^k-1)$のすべての約数を$a_{1},a_{2},a_{3},…,a_{n}$
(1)
$\displaystyle \sum_{i=1}^n a_i$
(2)
$\displaystyle \sum_{i=1}^n \displaystyle \frac{1}{a_i}$
出典:1986年群馬大学 大学院医学系研究科 医学部医学科 過去問
この動画を見る
$k$自然数
$2^k-1$が素数であるとする。
$a=2^{k-1}(2^k-1)$のすべての約数を$a_{1},a_{2},a_{3},…,a_{n}$
(1)
$\displaystyle \sum_{i=1}^n a_i$
(2)
$\displaystyle \sum_{i=1}^n \displaystyle \frac{1}{a_i}$
出典:1986年群馬大学 大学院医学系研究科 医学部医学科 過去問
群馬大 複素数 Mathematics Japanese university entrance exam
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#平面上の曲線#複素数#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#数学(高校生)#群馬大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$z=\displaystyle \frac{\sqrt{ 3 }-1}{2}+\displaystyle \frac{\sqrt{ 3 }+1}{2}i$
(1)
$\displaystyle \frac{z}{1+i}$を$a+bi$の形で表せ
(2)
$z$を極形式で表せ
(3)
$z^{12}$を求めよ
出典:2004年国立大学法人群馬大学 過去問
この動画を見る
$z=\displaystyle \frac{\sqrt{ 3 }-1}{2}+\displaystyle \frac{\sqrt{ 3 }+1}{2}i$
(1)
$\displaystyle \frac{z}{1+i}$を$a+bi$の形で表せ
(2)
$z$を極形式で表せ
(3)
$z^{12}$を求めよ
出典:2004年国立大学法人群馬大学 過去問
群馬大 整数問題 Mathematics Japanese university entrance exam
単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$p$素数、$m,n$整数$(m \neq 0)$
$n,p-m,m+n$がこの順に等差数列
$p-m,n,p+m$がこの順に等比数列
$p,m,n$を求めよ
出典:群馬大学 過去問
この動画を見る
$p$素数、$m,n$整数$(m \neq 0)$
$n,p-m,m+n$がこの順に等差数列
$p-m,n,p+m$がこの順に等比数列
$p,m,n$を求めよ
出典:群馬大学 過去問
群馬大 漸化式 Mathematics Japanese university entrance exam
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_{1}=15$
$a_{x}=2a_{n-1}+4^n-1$
(1)
$a_{n}$を$n$を用いて表せ
(2)
$\displaystyle \sum_{n=1}^\infty \displaystyle \frac{2^n}{a_{n}}$
出典:1993年群馬大学 過去問
この動画を見る
$a_{1}=15$
$a_{x}=2a_{n-1}+4^n-1$
(1)
$a_{n}$を$n$を用いて表せ
(2)
$\displaystyle \sum_{n=1}^\infty \displaystyle \frac{2^n}{a_{n}}$
出典:1993年群馬大学 過去問
群馬大・津田塾大 数列の和・積分 高校数学 Mathematics Japanese university entrance exam
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学#数B#津田塾大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
群馬大学過去問題
$a_k= \frac{(3k+1)(3k+2)}{3k(k+1)}$ (k自然数)
$\displaystyle\sum_{k=1}^n a_k$をnの式で
津田塾大学過去問題
$C:y=x^2-x-4|x-1|$と直線lは2点で接する。
Cとlで囲まれた面積
この動画を見る
群馬大学過去問題
$a_k= \frac{(3k+1)(3k+2)}{3k(k+1)}$ (k自然数)
$\displaystyle\sum_{k=1}^n a_k$をnの式で
津田塾大学過去問題
$C:y=x^2-x-4|x-1|$と直線lは2点で接する。
Cとlで囲まれた面積
群馬大 複素数 Mathematics Japanese university entrance exam
単元:
#大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
群馬大学過去問題
$Z=\frac{\sqrt3-1}{2}+\frac{\sqrt3+1}{2}i$
(1)$\frac{Z}{1+i}$をa+biの形で(a,b実数)
(2)Zを極形式で表せ
(3)$Z^{12}$を計算せよ
この動画を見る
群馬大学過去問題
$Z=\frac{\sqrt3-1}{2}+\frac{\sqrt3+1}{2}i$
(1)$\frac{Z}{1+i}$をa+biの形で(a,b実数)
(2)Zを極形式で表せ
(3)$Z^{12}$を計算せよ
群馬大/岐阜大 二次関数/二次方程式 高校数学 Japanese university entrance exam questions
単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#岐阜大学#数学(高校生)#群馬大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
群馬大学過去問題
$y=x^2+ax+2$とA(0,1),B(2,3)を結ぶ線分ABと異なる2点で交わるaの範囲。
岐阜大学過去問題
$mx^2+5(m+1)x+4(m+2)=0$が有理数の解をもつ整数mの値
この動画を見る
群馬大学過去問題
$y=x^2+ax+2$とA(0,1),B(2,3)を結ぶ線分ABと異なる2点で交わるaの範囲。
岐阜大学過去問題
$mx^2+5(m+1)x+4(m+2)=0$が有理数の解をもつ整数mの値