三角比(三角比・拡張・相互関係・単位円)
気づけば一瞬!!円周角の和
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\angle x + \angle y =$
*図は動画内参照
この動画を見る
$\angle x + \angle y =$
*図は動画内参照
円周角
福田のわかった数学〜高校1年生040〜22.5°の三角比
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{I}$
22.5°の三角比
$\sin22.5°,\ \cos22.5°,\ \tan22.5°$を求めよ。
ただし、分母は有利化すること。
この動画を見る
数学$\textrm{I}$
22.5°の三角比
$\sin22.5°,\ \cos22.5°,\ \tan22.5°$を求めよ。
ただし、分母は有利化すること。
福田のわかった数学〜高校1年生039〜15°の三角比
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{I}$
15°の三角比
$\sin15°,\cos15°,\tan15°$を求めよ。
この動画を見る
数学$\textrm{I}$
15°の三角比
$\sin15°,\cos15°,\tan15°$を求めよ。
福田のわかった数学〜高校1年生038〜三角比、簡単な測量
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{I}$三角比、簡単な測量
山の高さを測るために図の2地点A,B(※動画参照)から
仰角を測るとそれぞれ$\alpha,\beta$であった。
$AB=x$とすると、山の高さはいくらか。
この動画を見る
数学$\textrm{I}$三角比、簡単な測量
山の高さを測るために図の2地点A,B(※動画参照)から
仰角を測るとそれぞれ$\alpha,\beta$であった。
$AB=x$とすると、山の高さはいくらか。
福田の数学〜慶應義塾大学2021年環境情報学部第1問〜三角形の内部にある外接している5つの円
単元:
#数Ⅰ#数A#大学入試過去問(数学)#図形の性質#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#方べきの定理と2つの円の関係#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} 図(※動画参照)のように三角形ABCの内部に半径1の円が5つ含まれている。4つの円は\\
辺BCに接しながら横一列に互いに接しながら並び、左端の円は辺ABに接し、右端の円は\\
辺ACに接している。また、もう一つの円は、辺ABと辺ACに接し、4つの円の右側の2つ\\
の円に接している。このとき\\
AB=\frac{\sqrt{\boxed{\ \ アイ\ \ }}}{\boxed{\ \ ウエ\ \ }}BC AC=\frac{\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }}BC\\
BC=\frac{\boxed{\ \ ケコ\ \ }+\boxed{\ \ サシ\ \ }\sqrt{\boxed{\ \ スセ\ \ }}+\boxed{\ \ ソタ\ \ }\sqrt{\boxed{\ \ チツ\ \ }}}{\boxed{\ \ テト\ \ }} (\boxed{\ \ スセ\ \ } \lt \boxed{\ \ チツ\ \ })\\
である。
\end{eqnarray}
2021慶應義塾大学環境情報学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}} 図(※動画参照)のように三角形ABCの内部に半径1の円が5つ含まれている。4つの円は\\
辺BCに接しながら横一列に互いに接しながら並び、左端の円は辺ABに接し、右端の円は\\
辺ACに接している。また、もう一つの円は、辺ABと辺ACに接し、4つの円の右側の2つ\\
の円に接している。このとき\\
AB=\frac{\sqrt{\boxed{\ \ アイ\ \ }}}{\boxed{\ \ ウエ\ \ }}BC AC=\frac{\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }}BC\\
BC=\frac{\boxed{\ \ ケコ\ \ }+\boxed{\ \ サシ\ \ }\sqrt{\boxed{\ \ スセ\ \ }}+\boxed{\ \ ソタ\ \ }\sqrt{\boxed{\ \ チツ\ \ }}}{\boxed{\ \ テト\ \ }} (\boxed{\ \ スセ\ \ } \lt \boxed{\ \ チツ\ \ })\\
である。
\end{eqnarray}
2021慶應義塾大学環境情報学部過去問
円 東京学芸大学附属
単元:
#数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#平面図形#角度と面積#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
半径=5
BC=?
*図は動画内参照
東京学芸大学附属高校
この動画を見る
半径=5
BC=?
*図は動画内参照
東京学芸大学附属高校
円と直角三角形 B
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
半径=5
BC=?
*図は動画内参照
東京学芸大学附属高校
この動画を見る
半径=5
BC=?
*図は動画内参照
東京学芸大学附属高校
円 学芸大学附属 B
単元:
#数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
円の半径=5
BC=?
*図は動画内参照
東京学芸大学附属高校
この動画を見る
円の半径=5
BC=?
*図は動画内参照
東京学芸大学附属高校
垂線の長さの和=❓ B
単元:
#数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
DE+EF=?
*図は動画内参照
東北学院高等学校
この動画を見る
DE+EF=?
*図は動画内参照
東北学院高等学校
【高校数学】三角関数の性質の考え方~θ+2nπ, -θ, θ+π, θ+π/2~ 4-3 【数学Ⅱ】
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
たくさんある三角比の公式
覚えないといけないと思っていませんか!?
暗記は不要です!!
この動画を見る
たくさんある三角比の公式
覚えないといけないと思っていませんか!?
暗記は不要です!!
【数Ⅰ】図形と計量:三角比の表④演習 (1)sin60°(2)cos45°(3)tan120°(4)cos90°の値を求めよ。
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
(1)sin60°(2)cos45°(3)tan120°(4)cos90°の値を求めよ。
この動画を見る
(1)sin60°(2)cos45°(3)tan120°(4)cos90°の値を求めよ。
【数Ⅰ】図形と計量:三角比の表③
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
・sin0°, sin90°, sin180°の値を求めよ。
・cos0°, cos90°, cos180°の値を求めよ。
・tan0°, tan90°, tan180°の値を求めよ。
この動画を見る
・sin0°, sin90°, sin180°の値を求めよ。
・cos0°, cos90°, cos180°の値を求めよ。
・tan0°, tan90°, tan180°の値を求めよ。
早稲田実業高 円の性質・角の二等分線の定理
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
(1)半円の半径を求めよ.
(2)$AD$の長さを求めよ.
(3)$\triangle ADE$の長さを求めよ.
早稲田実業高過去問
この動画を見る
(1)半円の半径を求めよ.
(2)$AD$の長さを求めよ.
(3)$\triangle ADE$の長さを求めよ.
早稲田実業高過去問
角度 解けたら楽しい レベルC
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
四角形ABCDは正方形
$\angle x=?$
*図は動画内参照
この動画を見る
四角形ABCDは正方形
$\angle x=?$
*図は動画内参照
【数Ⅰ】図形と計量:三角比の表②
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
・sin120°, sin135°, sin150°の値を求めよ。
・cos120°, cos135°, cos150°の値を求めよ。
・tan120°, tan135°, tan150°の値を求めよ。
この動画を見る
・sin120°, sin135°, sin150°の値を求めよ。
・cos120°, cos135°, cos150°の値を求めよ。
・tan120°, tan135°, tan150°の値を求めよ。
【数Ⅰ】図形と計量:三角比の表①30°45°60°から!
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
・sin30°, sin45°, sin60°の値を求めよ。
・cos30°, cos45°, cos60°の値を求めよ。
・tan30°, tan45°, tan60°の値を求めよ。
この動画を見る
・sin30°, sin45°, sin60°の値を求めよ。
・cos30°, cos45°, cos60°の値を求めよ。
・tan30°, tan45°, tan60°の値を求めよ。
数学「大学入試良問集」【6−5 母線の等しい四面体】を宇宙一わかりやすく
単元:
#数Ⅰ#数A#図形の性質#図形と計量#三角比(三角比・拡張・相互関係・単位円)#内心・外心・重心とチェバ・メネラウス#数学(高校生)
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
1辺の長さが2の正三角形$ABC$を底面とし、
$OA=OB=OC=2a(a \gt 1)$
である四面体$OABC$について、辺$AB$の中点を$M$とし、頂点$O$から直線$CM$に下した垂線を$OH$とする。
$\angle OMC=\theta$とするとき、次の各問いに答えよ。
(1)$\cos\theta$を$a$を用いて表せ。
(2)$OH$の長さを$a$を用いて表せ。
(3)$OH$の長さが$2\sqrt{ 3 }$になるときの$a$の値を求めよ。
この動画を見る
1辺の長さが2の正三角形$ABC$を底面とし、
$OA=OB=OC=2a(a \gt 1)$
である四面体$OABC$について、辺$AB$の中点を$M$とし、頂点$O$から直線$CM$に下した垂線を$OH$とする。
$\angle OMC=\theta$とするとき、次の各問いに答えよ。
(1)$\cos\theta$を$a$を用いて表せ。
(2)$OH$の長さを$a$を用いて表せ。
(3)$OH$の長さが$2\sqrt{ 3 }$になるときの$a$の値を求めよ。
おうぎ形の折り返しB 中1も解ける!
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#平面図形#角度と面積#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
斜線部の面積=?
*図は動画内参照
この動画を見る
斜線部の面積=?
*図は動画内参照
人生色々 補助線の引き方も色々(3通りの解説) A
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\angle ADB=?$
*図は動画内参照
2021福岡県
この動画を見る
$\angle ADB=?$
*図は動画内参照
2021福岡県
高校入試なので、正弦定理は制限して下さい。A 2021 愛知県
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
円の半径=6
BC=?
*図は動画内参照
2021愛知県
この動画を見る
円の半径=6
BC=?
*図は動画内参照
2021愛知県
【数学Ⅱ】半角の公式は覚えるな!
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
(1) $\cos \displaystyle \frac{\pi}{8}$
(2) $\sin \displaystyle \frac{\pi}{8}$
(3) $\cos \displaystyle \frac{\pi}{12}$
この動画を見る
(1) $\cos \displaystyle \frac{\pi}{8}$
(2) $\sin \displaystyle \frac{\pi}{8}$
(3) $\cos \displaystyle \frac{\pi}{12}$
【超危険】三角比が簡単に覚えられすぎちゃう!?【数学・物理】
単元:
#数Ⅰ#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
3rd School
問題文全文(内容文):
三角比$\sin \cos \tan$の覚え方解説動画です
この動画を見る
三角比$\sin \cos \tan$の覚え方解説動画です
円にできる三角形の個数 B
単元:
#数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
A~Hから3点選んで結び三角形を作る
(1)二等辺三角形は何コ?
(2)直角三角形は何コ?
*図は動画内参照
2021東京農業大学第一高等学校
この動画を見る
A~Hから3点選んで結び三角形を作る
(1)二等辺三角形は何コ?
(2)直角三角形は何コ?
*図は動画内参照
2021東京農業大学第一高等学校
2021 愛知高校 図形 B
単元:
#数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
斜線部の面積は?
*図は動画内参照
2021愛知高等学校
この動画を見る
斜線部の面積は?
*図は動画内参照
2021愛知高等学校
智弁和歌山2021 A
単元:
#数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
AB=5,BC=3,AE=?
*図は動画内参照
2021智辯学園和歌山高等学校
この動画を見る
AB=5,BC=3,AE=?
*図は動画内参照
2021智辯学園和歌山高等学校
共通テスト第2日程2021年数学詳しい解説〜共通テスト第2日程2021年IA第1問〜2次関数と三角比
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#2次関数#図形と計量#一次不等式(不等式・絶対値のある方程式・不等式)#2次方程式と2次不等式#2次関数とグラフ#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\large第1問}$
[1] $a,b$を定数とするとき、$x$についての不等式
$|ax-b-7| \lt 3$ $\cdots$①
を考える。
(1)$a=-3,b=-2$とする。①を満たす整数全体の集合を$P$とする。
この集合$P$を、要素を書き並べて表すと
$P=\left\{\boxed{\ \ アイ\ \ }, \boxed{\ \ ウエ\ \ }\right\}$
となる。ただし、$\boxed{\ \ アイ\ \ }, \boxed{\ \ ウエ\ \ }$の解答の順序は問わない。
(2)$a=\displaystyle \frac{1}{\sqrt2}$とする。
$(\textrm{i})b=1$のとき、①を満たす整数は全部で$\boxed{\ \ オ\ \ }$個である。
$(\textrm{ii})$①を満たす整数が全部で$(\boxed{\ \ オ\ \ }+1)$個であるような正の整数$b$
のうち、最小のものは$\boxed{\ \ カ\ \ }$である。
[2]平面上に2点$A,B$があり、$AB=8$である。直線$AB$上にない点$P$をとり、
$\triangle ABP$をつくり、その外接円の半径を$R$とする。
太郎さんは、図1(※動画参照)のように、コンピュータソフトを使って点$P$
をいろいろな位置に取った。
図1は、点$P$をいろいろな位置にとったときの$\triangle$の外接円をかいたものである。
(1)太郎さんは、点$P$のとり方によって外接円の半径が異なることに気づき、
次の問題1を考えることにした。
問題1:点$P$をいろいろな位置にとるとき、外接円の半径$R$が最小となる
$\triangle ABP$はどのような三角形か。
正弦定理により、$2R=\displaystyle \frac{\boxed{\ \ キ\ \ }}{\sin\angle APB}$である。よって、
Rが最小となるのは$\angle APB=\boxed{\ \ クケ\ \ }°$の三角形である。
このとき、$R=\boxed{\ \ コ\ \ }$である。
(2)太郎さんは、図2(※動画参照)のように、問題1の点$P$のとり方に
条件を付けて、次の問題2を考えた。
問題2:直線$AB$に平行な直線を$l$とし、直線l上で点$P$をいろいろな
位置にとる。このとき、外接円の半径$R$が最小となる$\triangle ABP$は
どのような三角形か。
太郎さんは、この問題を解決するために、次の構想を立てた。
問題2の解決の構想
問題1の考察から、線分$AB$を直径とする円を$C$とし、円$C$に着目
する。直線lは、その位置によって、円$C$と共有点を持つ場合と
もたない場合があるので、それぞれの場合に分けて考える。
直線$AB$と直線lとの距離を$h$とする。直線lが円$C$と共有点を
持つ場合は、$h \leqq \boxed{\ \ サ\ \ }$のときであり、共有点をもたない場合は、
$h \gt \boxed{\ \ サ\ \ }$のときである。
$(\textrm{i})h \leqq \boxed{\ \ サ\ \ }$のとき
直線$l$が円$C$と共有点をもつので、$R$が最小となる$\triangle ABP$は、
$h \lt \boxed{\ \ サ\ \ }$のとき$\boxed{\boxed{\ \ シ\ \ }}$であり、$h=\boxed{\ \ サ\ \ }$のとき直角二等辺三角形
である。
$(\textrm{ii})h \gt \boxed{\ \ サ\ \ }$のとき
線分$AB$の垂直二等分線を$m$とし、直線$m$と直線$l$との交点を$P_1$とする。
直線$l$上にあり点$P_1$とは異なる点を$P_2$とするとき$\sin\angle AP_1B$
と$\sin\angle AP_2B$の大小を考える。
$\triangle ABP_2$の外接円と直線$m$との共有点のうち、直線$AB$に関して点$P_2$
と同じ側にある点を$P_3$とすると、$\angle AP_3B \boxed{\boxed{\ \ ス\ \ }}\angle AP_2B$である。
また、$\angle AP_3B \lt \angle AP_1B \lt 90°$より$\sin \angle AP_3B \boxed{\boxed{\ \ セ\ \ }}\angle AP_1B$である。
このとき$(\triangle ABP_1$の外接円の半径$) \boxed{\boxed{\ \ ソ\ \ }} (\triangle ABP_2$の外接円の半径)
であり、$R$が最小となる$\triangle ABP$は$\boxed{\boxed{\ \ タ\ \ }}$である。
$\boxed{\boxed{\ \ シ\ \ }}, \boxed{\boxed{\ \ タ\ \ }}$については、最も適当なものを、次の⓪~④のうち
から一つずつ選べ。ただし、同じものを繰り返し選んでもよい。
⓪鈍角三角形 ①直角三角形 ②正三角形
③二等辺三角形 ④直角二等辺三角形
$\boxed{\boxed{\ \ ス\ \ }}~\boxed{\boxed{\ \ ソ\ \ }}$の解答群(同じものを繰り返し選んでもよい。)
⓪$\lt$ ①$=$ ②$\gt$
(3)問題2の考察を振り返って、$h=8$のとき、$\triangle ABP$の外接円の半径$R$
が最小である場合について考える。このとき、$\sin\angle APB=\displaystyle \frac{\boxed{\ \ チ\ \ }}{\boxed{\ \ ツ\ \ }}$
であり、$R=\boxed{\ \ テ\ \ }$である。
2021共通テスト過去問
この動画を見る
${\large第1問}$
[1] $a,b$を定数とするとき、$x$についての不等式
$|ax-b-7| \lt 3$ $\cdots$①
を考える。
(1)$a=-3,b=-2$とする。①を満たす整数全体の集合を$P$とする。
この集合$P$を、要素を書き並べて表すと
$P=\left\{\boxed{\ \ アイ\ \ }, \boxed{\ \ ウエ\ \ }\right\}$
となる。ただし、$\boxed{\ \ アイ\ \ }, \boxed{\ \ ウエ\ \ }$の解答の順序は問わない。
(2)$a=\displaystyle \frac{1}{\sqrt2}$とする。
$(\textrm{i})b=1$のとき、①を満たす整数は全部で$\boxed{\ \ オ\ \ }$個である。
$(\textrm{ii})$①を満たす整数が全部で$(\boxed{\ \ オ\ \ }+1)$個であるような正の整数$b$
のうち、最小のものは$\boxed{\ \ カ\ \ }$である。
[2]平面上に2点$A,B$があり、$AB=8$である。直線$AB$上にない点$P$をとり、
$\triangle ABP$をつくり、その外接円の半径を$R$とする。
太郎さんは、図1(※動画参照)のように、コンピュータソフトを使って点$P$
をいろいろな位置に取った。
図1は、点$P$をいろいろな位置にとったときの$\triangle$の外接円をかいたものである。
(1)太郎さんは、点$P$のとり方によって外接円の半径が異なることに気づき、
次の問題1を考えることにした。
問題1:点$P$をいろいろな位置にとるとき、外接円の半径$R$が最小となる
$\triangle ABP$はどのような三角形か。
正弦定理により、$2R=\displaystyle \frac{\boxed{\ \ キ\ \ }}{\sin\angle APB}$である。よって、
Rが最小となるのは$\angle APB=\boxed{\ \ クケ\ \ }°$の三角形である。
このとき、$R=\boxed{\ \ コ\ \ }$である。
(2)太郎さんは、図2(※動画参照)のように、問題1の点$P$のとり方に
条件を付けて、次の問題2を考えた。
問題2:直線$AB$に平行な直線を$l$とし、直線l上で点$P$をいろいろな
位置にとる。このとき、外接円の半径$R$が最小となる$\triangle ABP$は
どのような三角形か。
太郎さんは、この問題を解決するために、次の構想を立てた。
問題2の解決の構想
問題1の考察から、線分$AB$を直径とする円を$C$とし、円$C$に着目
する。直線lは、その位置によって、円$C$と共有点を持つ場合と
もたない場合があるので、それぞれの場合に分けて考える。
直線$AB$と直線lとの距離を$h$とする。直線lが円$C$と共有点を
持つ場合は、$h \leqq \boxed{\ \ サ\ \ }$のときであり、共有点をもたない場合は、
$h \gt \boxed{\ \ サ\ \ }$のときである。
$(\textrm{i})h \leqq \boxed{\ \ サ\ \ }$のとき
直線$l$が円$C$と共有点をもつので、$R$が最小となる$\triangle ABP$は、
$h \lt \boxed{\ \ サ\ \ }$のとき$\boxed{\boxed{\ \ シ\ \ }}$であり、$h=\boxed{\ \ サ\ \ }$のとき直角二等辺三角形
である。
$(\textrm{ii})h \gt \boxed{\ \ サ\ \ }$のとき
線分$AB$の垂直二等分線を$m$とし、直線$m$と直線$l$との交点を$P_1$とする。
直線$l$上にあり点$P_1$とは異なる点を$P_2$とするとき$\sin\angle AP_1B$
と$\sin\angle AP_2B$の大小を考える。
$\triangle ABP_2$の外接円と直線$m$との共有点のうち、直線$AB$に関して点$P_2$
と同じ側にある点を$P_3$とすると、$\angle AP_3B \boxed{\boxed{\ \ ス\ \ }}\angle AP_2B$である。
また、$\angle AP_3B \lt \angle AP_1B \lt 90°$より$\sin \angle AP_3B \boxed{\boxed{\ \ セ\ \ }}\angle AP_1B$である。
このとき$(\triangle ABP_1$の外接円の半径$) \boxed{\boxed{\ \ ソ\ \ }} (\triangle ABP_2$の外接円の半径)
であり、$R$が最小となる$\triangle ABP$は$\boxed{\boxed{\ \ タ\ \ }}$である。
$\boxed{\boxed{\ \ シ\ \ }}, \boxed{\boxed{\ \ タ\ \ }}$については、最も適当なものを、次の⓪~④のうち
から一つずつ選べ。ただし、同じものを繰り返し選んでもよい。
⓪鈍角三角形 ①直角三角形 ②正三角形
③二等辺三角形 ④直角二等辺三角形
$\boxed{\boxed{\ \ ス\ \ }}~\boxed{\boxed{\ \ ソ\ \ }}$の解答群(同じものを繰り返し選んでもよい。)
⓪$\lt$ ①$=$ ②$\gt$
(3)問題2の考察を振り返って、$h=8$のとき、$\triangle ABP$の外接円の半径$R$
が最小である場合について考える。このとき、$\sin\angle APB=\displaystyle \frac{\boxed{\ \ チ\ \ }}{\boxed{\ \ ツ\ \ }}$
であり、$R=\boxed{\ \ テ\ \ }$である。
2021共通テスト過去問
2021渋谷幕張 円 D
単元:
#数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\angle BAC=60°$
(1)DE=?
(2)CE=?
*図は動画内参照
2021渋谷教育学園幕張高等学校
この動画を見る
$\angle BAC=60°$
(1)DE=?
(2)CE=?
*図は動画内参照
2021渋谷教育学園幕張高等学校
共通テスト2021年数学詳しい解説〜共通テスト2021年IA第1問〜2次関数、三角比
単元:
#数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\large第1問}$
[1]$c$を正の整数とする。$x$の2次方程式
$2x^2+(4c-3)x+2c^2-c-11=0$ $\cdots$①
について考える。
(1)$c=1$のとき、①のっ左辺を因数分解すると
$\left(\boxed{\ \ ア\ \ }\ x+\boxed{\ \ イ\ \ }\right)\left(x-\boxed{\ \ ウ\ \ }\right)$
であるから、①の解は
$x=-\displaystyle \frac{\boxed{\ \ イ\ \ }}{\boxed{\ \ ア\ \ }},\ \boxed{\ \ ウ\ \ }$
である。
(2)$c=2$のとき、①の解は
$x=\displaystyle \frac{-\boxed{\ \ エ\ \ }\pm\sqrt{\boxed{\ \ オカ\ \ }}}{\boxed{\ \ キ\ \ }}$
であり、大きい方の解を$\alpha$とすると
$\displaystyle \frac{5}{\alpha}=\displaystyle \frac{\boxed{\ \ ク\ \ }\pm\sqrt{\boxed{\ \ ケコ\ \ }}}{\boxed{\ \ サ\ \ }}$
である。また、$m \lt \displaystyle \frac{5}{\alpha} \lt m+1$を満たす整数$m$は$\boxed{\ \ シ\ \ }$である。
(3)太郎さんと花子さんは、①の解について考察している。
太郎:①の解は$c$の値によって、ともに有理数である場合も
あれば、ともに無理数である場合もあるね。$c$がどの
ような値のときに、解は有理数になるのかな。
花子:2次方程式の解の公式の根号の中に着目すれば
いいんじゃないかな。
①の解が異なる二つの有理数であるような正の整数$c$の個数は
$\boxed{\ \ ス\ \ }$個である。
[2]右の図のように(※動画参照)、$\triangle ABC$の外側に辺$AB,BC,CA$
をそれぞれ1辺とする正方形$ADEB,BFGC,CHIA$をかき、
2点$E$と$F,G$と$H,I$と$D$をそれぞれ線分で結んだ図形を考える。
以下において
$BC=a, CA=b, AB=c$
$\angle CAB=A, \angle ABC=B, \angle BCA=C$
とする。
(1)$b=6,c=5,\cos A=\displaystyle \frac{3}{5}$のとき、$\sin A=\displaystyle \frac{\boxed{\ \ セ\ \ }}{\boxed{\ \ ソ\ \ }}$であり、
$\triangle ABC$の面積は$\boxed{\ \ タチ\ \ }、\triangle AID$の面積は$\boxed{\ \ ツテ\ \ }$である。
(2)正方形$BFGC, CHIA, ADEB$の面積をそれぞれ$S_1,S_2,S_3$とする。
このとき、$S_1-S_2-S_3$は
・$0° \lt A \lt 90°$のとき、$\boxed{\boxed{\ \ ト\ \ }}$。
・$A=90°$のとき、$\boxed{\boxed{\ \ ナ\ \ }}$。
・$90° \lt A \lt 180°$のとき、$\boxed{\boxed{\ \ ニ\ \ }}$。
$\boxed{\boxed{\ \ ト\ \ }}~\boxed{\boxed{\ \ ニ\ \ }}$の解答群(同じものを繰り返し選んでもよい。)
⓪$0$である
①正の値である
②負の値である
③正の値も負の値もとる
(3)$\triangle AID,\triangle BEF,\triangle CGH$の面積をそれぞれ$T_1,T_2,T_3$とする。
このとき、$\boxed{\boxed{\ \ ヌ\ \ }}$である。
$\boxed{\boxed{\ \ ヌ\ \ }}$の解答群
⓪$a \lt b \lt c$ならば、$T_1 \gt T_2 \gt T_3$
①$a \lt b \lt c$ならば、$T_1 \lt T_2 \lt T_3$
②$A$が鈍角ならば、$T_1 \lt T_2かつT_2 \lt T_3$
③$a,b,c$の値に関係なく、$T_1=T_2=T_3$
(4)$\triangle ABC,\triangle AID,\triangle BEF,\triangle CGH$のうち、外接円の半径が最も小さい
ものを求める。
$0° \lt A \lt 90°$のとき、$ID \boxed{\boxed{\ \ ネ\ \ }}BC$であり
($\triangle AID$の外接円の半径)$\boxed{\boxed{\ \ ノ\ \ }}$($\triangle ABC$の外接円の半径)
であるから、外接円の半径が最も小さい三角形は
・$0° \lt A \lt B \lt C \lt 90°$のとき、$\boxed{\boxed{\ \ ハ\ \ }}$である。
・$0° \lt A \lt B \lt 90° \lt $Cのとき、$\boxed{\boxed{\ \ ヒ\ \ }}$である。
$\boxed{\boxed{\ \ ネ\ \ }},\boxed{\boxed{\ \ ノ\ \ }}$の解答群(同じものを繰り返し選んでもよい。)
⓪$\lt$ ①$=$ ②$\gt$
$\boxed{\boxed{\ \ ハ\ \ }},\boxed{\boxed{\ \ ヒ\ \ }}$の解答群(同じものを繰り返し選んでもよい。)
⓪$\triangle ABC$ ①$\triangle AID$ ②$\triangle BEF$ ③$\triangle CGH$
2021共通テスト過去問
この動画を見る
${\large第1問}$
[1]$c$を正の整数とする。$x$の2次方程式
$2x^2+(4c-3)x+2c^2-c-11=0$ $\cdots$①
について考える。
(1)$c=1$のとき、①のっ左辺を因数分解すると
$\left(\boxed{\ \ ア\ \ }\ x+\boxed{\ \ イ\ \ }\right)\left(x-\boxed{\ \ ウ\ \ }\right)$
であるから、①の解は
$x=-\displaystyle \frac{\boxed{\ \ イ\ \ }}{\boxed{\ \ ア\ \ }},\ \boxed{\ \ ウ\ \ }$
である。
(2)$c=2$のとき、①の解は
$x=\displaystyle \frac{-\boxed{\ \ エ\ \ }\pm\sqrt{\boxed{\ \ オカ\ \ }}}{\boxed{\ \ キ\ \ }}$
であり、大きい方の解を$\alpha$とすると
$\displaystyle \frac{5}{\alpha}=\displaystyle \frac{\boxed{\ \ ク\ \ }\pm\sqrt{\boxed{\ \ ケコ\ \ }}}{\boxed{\ \ サ\ \ }}$
である。また、$m \lt \displaystyle \frac{5}{\alpha} \lt m+1$を満たす整数$m$は$\boxed{\ \ シ\ \ }$である。
(3)太郎さんと花子さんは、①の解について考察している。
太郎:①の解は$c$の値によって、ともに有理数である場合も
あれば、ともに無理数である場合もあるね。$c$がどの
ような値のときに、解は有理数になるのかな。
花子:2次方程式の解の公式の根号の中に着目すれば
いいんじゃないかな。
①の解が異なる二つの有理数であるような正の整数$c$の個数は
$\boxed{\ \ ス\ \ }$個である。
[2]右の図のように(※動画参照)、$\triangle ABC$の外側に辺$AB,BC,CA$
をそれぞれ1辺とする正方形$ADEB,BFGC,CHIA$をかき、
2点$E$と$F,G$と$H,I$と$D$をそれぞれ線分で結んだ図形を考える。
以下において
$BC=a, CA=b, AB=c$
$\angle CAB=A, \angle ABC=B, \angle BCA=C$
とする。
(1)$b=6,c=5,\cos A=\displaystyle \frac{3}{5}$のとき、$\sin A=\displaystyle \frac{\boxed{\ \ セ\ \ }}{\boxed{\ \ ソ\ \ }}$であり、
$\triangle ABC$の面積は$\boxed{\ \ タチ\ \ }、\triangle AID$の面積は$\boxed{\ \ ツテ\ \ }$である。
(2)正方形$BFGC, CHIA, ADEB$の面積をそれぞれ$S_1,S_2,S_3$とする。
このとき、$S_1-S_2-S_3$は
・$0° \lt A \lt 90°$のとき、$\boxed{\boxed{\ \ ト\ \ }}$。
・$A=90°$のとき、$\boxed{\boxed{\ \ ナ\ \ }}$。
・$90° \lt A \lt 180°$のとき、$\boxed{\boxed{\ \ ニ\ \ }}$。
$\boxed{\boxed{\ \ ト\ \ }}~\boxed{\boxed{\ \ ニ\ \ }}$の解答群(同じものを繰り返し選んでもよい。)
⓪$0$である
①正の値である
②負の値である
③正の値も負の値もとる
(3)$\triangle AID,\triangle BEF,\triangle CGH$の面積をそれぞれ$T_1,T_2,T_3$とする。
このとき、$\boxed{\boxed{\ \ ヌ\ \ }}$である。
$\boxed{\boxed{\ \ ヌ\ \ }}$の解答群
⓪$a \lt b \lt c$ならば、$T_1 \gt T_2 \gt T_3$
①$a \lt b \lt c$ならば、$T_1 \lt T_2 \lt T_3$
②$A$が鈍角ならば、$T_1 \lt T_2かつT_2 \lt T_3$
③$a,b,c$の値に関係なく、$T_1=T_2=T_3$
(4)$\triangle ABC,\triangle AID,\triangle BEF,\triangle CGH$のうち、外接円の半径が最も小さい
ものを求める。
$0° \lt A \lt 90°$のとき、$ID \boxed{\boxed{\ \ ネ\ \ }}BC$であり
($\triangle AID$の外接円の半径)$\boxed{\boxed{\ \ ノ\ \ }}$($\triangle ABC$の外接円の半径)
であるから、外接円の半径が最も小さい三角形は
・$0° \lt A \lt B \lt C \lt 90°$のとき、$\boxed{\boxed{\ \ ハ\ \ }}$である。
・$0° \lt A \lt B \lt 90° \lt $Cのとき、$\boxed{\boxed{\ \ ヒ\ \ }}$である。
$\boxed{\boxed{\ \ ネ\ \ }},\boxed{\boxed{\ \ ノ\ \ }}$の解答群(同じものを繰り返し選んでもよい。)
⓪$\lt$ ①$=$ ②$\gt$
$\boxed{\boxed{\ \ ハ\ \ }},\boxed{\boxed{\ \ ヒ\ \ }}$の解答群(同じものを繰り返し選んでもよい。)
⓪$\triangle ABC$ ①$\triangle AID$ ②$\triangle BEF$ ③$\triangle CGH$
2021共通テスト過去問
一定であることの証明 慶應志木
単元:
#数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
PD+PE=一定であることを証明せよ。
*図は動画内参照
慶應義塾志木高等学校
この動画を見る
PD+PE=一定であることを証明せよ。
*図は動画内参照
慶應義塾志木高等学校