数学(高校生)
数学の演習は書いて行うべきか?~数学偏差値84.9の勉強法~数学は書く?それとも読む?できるようになるための秘策とは?!【篠原好】
単元:
#その他#勉強法#数学(高校生)
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
数学は書く?それとも読む?できるようになるための秘策とは?!
「数学の演習は書いて行うべきか?」についてお話しています。
この動画を見る
数学は書く?それとも読む?できるようになるための秘策とは?!
「数学の演習は書いて行うべきか?」についてお話しています。
数学の本質~たった3つだけ注意して結果を出す方法~偏差値84.9を文系でもたたき出す数学の勉強法【篠原好】
単元:
#その他#勉強法#数学(高校生)
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
たった3つだけ注意して結果を出す方法!
「数学の本質」についてお話しています。
この動画を見る
たった3つだけ注意して結果を出す方法!
「数学の本質」についてお話しています。
【BGM無版】早大生とコラボ!(第1回)~早大の数学ってどうなんですか?【篠原好】
単元:
#大学入試過去問(数学)#その他#数学(高校生)#その他
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
【第1回】早大生の鈴木さんとコラボ!
「早大の数学」についてお話をいただいています。
この動画を見る
【第1回】早大生の鈴木さんとコラボ!
「早大の数学」についてお話をいただいています。
早大生とコラボ!(第1回)~早大の数学ってどうなんですか?【篠原好】
単元:
#大学入試過去問(数学)#その他#数学(高校生)#その他
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
【第1回】早大生の鈴木さんとコラボ!
「早大の数学」についてお話をいただいています。
この動画を見る
【第1回】早大生の鈴木さんとコラボ!
「早大の数学」についてお話をいただいています。
【定期テスト対策】学年順位を80番上がった1か月で奇跡を起こす勉強法
単元:
#その他#英語(高校生)#勉強法・その他#勉強法#勉強法#その他#勉強法#数学(高校生)#理科(高校生)
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
学年順位を80番上がった1か月で奇跡を起こす勉強法!
「定期テストの勉強法」についてお話しています。
この動画を見る
学年順位を80番上がった1か月で奇跡を起こす勉強法!
「定期テストの勉強法」についてお話しています。
受験生必見!勝負強くなる方法!~テストにおける「勝てる受験生」とは?~京大生が教える【篠原好】
単元:
#その他#勉強法#京都大学
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
受験生必見!テストにおける「勝てる受験生」とは?
「勝負強くなる方法」についてお話しています。
この動画を見る
受験生必見!テストにおける「勝てる受験生」とは?
「勝負強くなる方法」についてお話しています。
【京大式】センター数学で98点得点する、センター試験対策~京大生のセンター突破戦略~【篠原好】
単元:
#その他#勉強法#数学(高校生)
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
センター数学で98点得点する、センター試験対策!
京大生の「センター突破戦略」についてのお話です。
この動画を見る
センター数学で98点得点する、センター試験対策!
京大生の「センター突破戦略」についてのお話です。
【京大式】数学のテストを効率的に復習する方法~原因別に分けて数学テストを効果的に復習しよう!【篠原好】
単元:
#その他#勉強法#数学(高校生)
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
原因別に分けて数学テストを効果的に復習しよう!
「数学のテストを効率的に復習する方法」についてのお話です。
この動画を見る
原因別に分けて数学テストを効果的に復習しよう!
「数学のテストを効率的に復習する方法」についてのお話です。
【数学】応用問題で点を取りたい人のための、京大式対策術~偏差値70を取るために今やるべきこと【篠原好】
単元:
#その他#勉強法#数学(高校生)
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
応用問題で点を取りたい人のための、京大式対策術!
偏差値70を取るために「今やるべきこと」についてのお話です。
この動画を見る
応用問題で点を取りたい人のための、京大式対策術!
偏差値70を取るために「今やるべきこと」についてのお話です。
【数学】基本問題をバッチリ解いて、数学で困らないようになる方法~基本問題を解くためにわかっておいて欲しいこと【篠原好】
単元:
#その他#勉強法#数学(高校生)
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
基本問題をバッチリ解いて、数学で困らないようになる方法!
「基本問題を解くためにわかっておいて欲しいこと」についてのお話です。
この動画を見る
基本問題をバッチリ解いて、数学で困らないようになる方法!
「基本問題を解くためにわかっておいて欲しいこと」についてのお話です。
【数学】公式が覚えられないなら、この動画から始めよう!数学の公式の暗記量を必要最小限におさえる方法【篠原好】
単元:
#その他#勉強法#数学(高校生)
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
公式が覚えられないなら、この動画から始めよう!
「数学の公式の暗記量を必要最小限におさえる方法」についてのお話です。
この動画を見る
公式が覚えられないなら、この動画から始めよう!
「数学の公式の暗記量を必要最小限におさえる方法」についてのお話です。
【数学】計算力不足で悩む中高生必見!計算力をつける勉強法を知り、数学で点を取ろう!【篠原好】
単元:
#その他#勉強法#数学(高校生)
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
計算力不足で悩む中高生必見!
「計算力をつける勉強法」についてのお話です。
この動画を見る
計算力不足で悩む中高生必見!
「計算力をつける勉強法」についてのお話です。
【偏差値80の勉強法】数学嫌いのための勉強法3ステップ
【英語】英語の応用問題で点を取る方法!京大生が3つのポイント別に点を取る勉強法を紹介します!【篠原好】
単元:
#その他#勉強法#数学(高校生)
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
英語の応用問題で点を取る方法!
「3つのポイント別に点を取る勉強法」を紹介しています。
この動画を見る
英語の応用問題で点を取る方法!
「3つのポイント別に点を取る勉強法」を紹介しています。
【数学】計算のスピードをアップさせろ!京大生が教える計算スピード向上術!【篠原好】
【数学】数学の「応用問題」が解けるようになるために、京大合格者がやった唯一のこと~偏差値70の数学勉強法【篠原好】
単元:
#数学検定・数学甲子園・数学オリンピック等#その他#勉強法#数学(高校生)
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
まず前提として、数学の問題は5つに分けることができます。
① +・-・×・÷の計算問題
② 公式
③ 基礎パターン
④ 応用問題
⑤ 天才向け
1つ目が四則演算。足す、引く、掛ける、割るができたら解ける計算問題です。2つ目が、「お前、公式知ってる?」っていう問題。基礎パターンがしっかり分かっている人が取れる問題が3番になります。そして4つ目が応用問題。最後にレベル5として、天才向けの問題があります。これは、偏差値85ぐらいの人が解く問題ですので、応用問題まで解けるようになれば、東大や京大は受かります。
では、どうやったら数学の応用問題が解けるようになるのでしょうか。
分かっておいてほしいのが、応用問題は、基礎パターンの組合せであるということです。なので、もし応用問題ができないと悩んでいるのであれば、基礎パターンの復習をしてください。これが応用問題が解けるようになるコツです。
一番やってはいけないのが、応用問題の演習です。これは、既に基礎パターンが分かっていて応用問題が解ける人が、もっと点を取れるように使うものだからです。
応用問題は、基礎パターンの組合せだから、ここの理解をちゃんとしていけば、いずれ必ず解けるようになります。
この動画を見る
まず前提として、数学の問題は5つに分けることができます。
① +・-・×・÷の計算問題
② 公式
③ 基礎パターン
④ 応用問題
⑤ 天才向け
1つ目が四則演算。足す、引く、掛ける、割るができたら解ける計算問題です。2つ目が、「お前、公式知ってる?」っていう問題。基礎パターンがしっかり分かっている人が取れる問題が3番になります。そして4つ目が応用問題。最後にレベル5として、天才向けの問題があります。これは、偏差値85ぐらいの人が解く問題ですので、応用問題まで解けるようになれば、東大や京大は受かります。
では、どうやったら数学の応用問題が解けるようになるのでしょうか。
分かっておいてほしいのが、応用問題は、基礎パターンの組合せであるということです。なので、もし応用問題ができないと悩んでいるのであれば、基礎パターンの復習をしてください。これが応用問題が解けるようになるコツです。
一番やってはいけないのが、応用問題の演習です。これは、既に基礎パターンが分かっていて応用問題が解ける人が、もっと点を取れるように使うものだからです。
応用問題は、基礎パターンの組合せだから、ここの理解をちゃんとしていけば、いずれ必ず解けるようになります。
【高校数学】「論理と集合」と「ベン図」をたぶん日本一わかりやすく解説した動画【篠原好】
単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
「論理と集合」について、わかりやすく解説しています。
この動画を見る
「論理と集合」について、わかりやすく解説しています。
【京大式】数学がニガテなら絶対に読んで欲しいこの本!和田秀樹さんの『数学は暗記だ!』【篠原好】
【For you 動画-16】 数B-数学的帰納法
単元:
#数学的帰納法#数学(高校生)#数B
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
[i]①____のとき成り立つことを確かめる。
[ii]②____のとき成り立つと③____ して、それを使って④____ のときに成り立つことをいう。
[iii]『以上より、すべての自然数に ついて成り立つ』と書こう!
◎$n$を自然数とするとき、$3^{n} \gt 2n$を証明しよう!
[i]⑤____のとき、⑥____ より成り立つ。
[ii]⑦____のとき成り立つと⑧すると
⑨
⑩____のとき、⑪____ を考えると
$\boxed{ ⑫ }$
つまり $3^{k+1} \gt 2(k+1)$となり
$n=k+1$のとき成り立つ。
[ iii] 以上より、すべての自然数について成り立つ。
この動画を見る
[i]①____のとき成り立つことを確かめる。
[ii]②____のとき成り立つと③____ して、それを使って④____ のときに成り立つことをいう。
[iii]『以上より、すべての自然数に ついて成り立つ』と書こう!
◎$n$を自然数とするとき、$3^{n} \gt 2n$を証明しよう!
[i]⑤____のとき、⑥____ より成り立つ。
[ii]⑦____のとき成り立つと⑧すると
⑨
⑩____のとき、⑪____ を考えると
$\boxed{ ⑫ }$
つまり $3^{k+1} \gt 2(k+1)$となり
$n=k+1$のとき成り立つ。
[ iii] 以上より、すべての自然数について成り立つ。
偏差値70の数学勉強法~数学は人生に関係ないの?【篠原好】
単元:
#その他#勉強法#数学(高校生)
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
偏差値70の数学勉強法についての説明だけにとどまらず、「数学は人生に関係ないの?」かという疑問についてもお話をしています。
この動画を見る
偏差値70の数学勉強法についての説明だけにとどまらず、「数学は人生に関係ないの?」かという疑問についてもお話をしています。
【高校数学】数Ⅰ-19 1次不等式③(連立不等式編)
単元:
#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①$\begin{eqnarray}
\left\{
\begin{array}{l}
3x + 8 \geqq 4x+2 \\
3x + 4 \gt -2x
\end{array}
\right.
\end{eqnarray}$
②$\begin{eqnarray}
\left\{
\begin{array}{l}
5x \lt 2(x-6) \\
7 - 2x \geqq 3x-8x
\end{array}
\right.
\end{eqnarray}$
③$2x-1\lt5x+8\lt7x+4$
この動画を見る
①$\begin{eqnarray}
\left\{
\begin{array}{l}
3x + 8 \geqq 4x+2 \\
3x + 4 \gt -2x
\end{array}
\right.
\end{eqnarray}$
②$\begin{eqnarray}
\left\{
\begin{array}{l}
5x \lt 2(x-6) \\
7 - 2x \geqq 3x-8x
\end{array}
\right.
\end{eqnarray}$
③$2x-1\lt5x+8\lt7x+4$
【高校数学】数Ⅰ-20 1次不等式④(応用編)
単元:
#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①不等式$3x-a \lt 2(5-x)$を満たすxのうちで最大整数が5であるとき、定数aの値の範囲は?
②とある店では500円で会員になることができ、会員は10%引きで買い物ができる。
この店で定価600円の品物を買うとき、会員になった方が合計金額が安くなるのは何個以上買うとき?
この動画を見る
①不等式$3x-a \lt 2(5-x)$を満たすxのうちで最大整数が5であるとき、定数aの値の範囲は?
②とある店では500円で会員になることができ、会員は10%引きで買い物ができる。
この店で定価600円の品物を買うとき、会員になった方が合計金額が安くなるのは何個以上買うとき?
【高校数学】数Ⅰ-18 1次不等式②(練習編)
単元:
#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎不等式を解こう。
①$\displaystyle \frac{1}{2}x \gt \displaystyle \frac{4}{5}x+3$
②$\displaystyle \frac{x}{3}-\displaystyle \frac{x-5}{2} \gt 0$
③$0.2x-1 \geqq 0.4x -1.5$
④$\displaystyle \frac{5}{6}x+\displaystyle \frac{1}{3} \leqq x+\displaystyle \frac{3}{4}$
この動画を見る
◎不等式を解こう。
①$\displaystyle \frac{1}{2}x \gt \displaystyle \frac{4}{5}x+3$
②$\displaystyle \frac{x}{3}-\displaystyle \frac{x-5}{2} \gt 0$
③$0.2x-1 \geqq 0.4x -1.5$
④$\displaystyle \frac{5}{6}x+\displaystyle \frac{1}{3} \leqq x+\displaystyle \frac{3}{4}$
【高校数学】数Ⅰ-17 1次不等式①(基本編)
単元:
#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎不等式を解こう。
①$4x-2\gt3x+5$
②$6x+3\lt4x-7$
③$7+2x\lt5x-2$
④$-3(2x+1)\leqq-x+2$
⑤$-5x+21+2(4x-3)\geqq0$
⑥$-3(3x+1)\lt7(x-2)$
この動画を見る
◎不等式を解こう。
①$4x-2\gt3x+5$
②$6x+3\lt4x-7$
③$7+2x\lt5x-2$
④$-3(2x+1)\leqq-x+2$
⑤$-5x+21+2(4x-3)\geqq0$
⑥$-3(3x+1)\lt7(x-2)$
【高校数学】数Ⅰ-16 √(ルート)シリーズ④(二重根号編)
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎2重根号を外そう。
①$\sqrt{ 4+2\sqrt{ 3 } }$
②$\sqrt{ 5-2\sqrt{ 6 } }$
③$\sqrt{ 8-\sqrt{ 48 } }$
④$\sqrt{ 11+6\sqrt{ 2 } }$
⑤$\sqrt{ 4+\sqrt{ 15 } }$
⑥$\sqrt{ 6-3\sqrt{ 3 } }$
この動画を見る
◎2重根号を外そう。
①$\sqrt{ 4+2\sqrt{ 3 } }$
②$\sqrt{ 5-2\sqrt{ 6 } }$
③$\sqrt{ 8-\sqrt{ 48 } }$
④$\sqrt{ 11+6\sqrt{ 2 } }$
⑤$\sqrt{ 4+\sqrt{ 15 } }$
⑥$\sqrt{ 6-3\sqrt{ 3 } }$
【高校数学】数Ⅰ-15 √(ルート)シリーズ③(応用編)
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎$\displaystyle \frac{1}{2-\sqrt{ 3 }}$の整数部分を$a$、小数部分を$b$とする。
①$a,b$の値は?
②$a+4b+2b^2+2$の値は?
②次の各場合について、$\sqrt{ x^2+6+9 }$を$x$の整式で表そう。
③$x \geqq -3$
④$x \lt -3$
この動画を見る
◎$\displaystyle \frac{1}{2-\sqrt{ 3 }}$の整数部分を$a$、小数部分を$b$とする。
①$a,b$の値は?
②$a+4b+2b^2+2$の値は?
②次の各場合について、$\sqrt{ x^2+6+9 }$を$x$の整式で表そう。
③$x \geqq -3$
④$x \lt -3$
【高校数学】数Ⅰ-14 √(ルート)シリーズ②(因数分解とのコラボ編)
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎$x=\displaystyle \frac{1}{\sqrt{ 5 }+\sqrt{ 2 }},y=\displaystyle \frac{1}{\sqrt{ 5 }-\sqrt{ 2 }}$のとき、次の式の値を求めよう。
①$x+y$
②$xy$
③$x^2+y^2$
◎$x=\displaystyle \frac{\sqrt{ 6 }+\sqrt{ 2 }}{ 2 }$のとき、次の値を求めよう。
④$x+\displaystyle \frac{1}{x}$
⑤$x^2+\displaystyle \frac{1}{x^2}$
⑥$x^3+\displaystyle \frac{1}{x^3}$
この動画を見る
◎$x=\displaystyle \frac{1}{\sqrt{ 5 }+\sqrt{ 2 }},y=\displaystyle \frac{1}{\sqrt{ 5 }-\sqrt{ 2 }}$のとき、次の式の値を求めよう。
①$x+y$
②$xy$
③$x^2+y^2$
◎$x=\displaystyle \frac{\sqrt{ 6 }+\sqrt{ 2 }}{ 2 }$のとき、次の値を求めよう。
④$x+\displaystyle \frac{1}{x}$
⑤$x^2+\displaystyle \frac{1}{x^2}$
⑥$x^3+\displaystyle \frac{1}{x^3}$
【高校数学】数Ⅰ-13 √(ルート)シリーズ①(有理化編)
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎計算しよう。
①$\displaystyle \frac{2\sqrt{ 5 }-5\sqrt{ 2 }}{\sqrt{ 5 }-\sqrt{ 2 }}$
②$\displaystyle \frac{1}{1-\sqrt{ 2 }}-\displaystyle \frac{1}{\sqrt{ 2 }-\sqrt{ 3 }}+\displaystyle \frac{1}{\sqrt{ 3 }-2}$
③$\displaystyle \frac{1}{1+\sqrt{ 5 }+\sqrt{ 6 }}$
この動画を見る
◎計算しよう。
①$\displaystyle \frac{2\sqrt{ 5 }-5\sqrt{ 2 }}{\sqrt{ 5 }-\sqrt{ 2 }}$
②$\displaystyle \frac{1}{1-\sqrt{ 2 }}-\displaystyle \frac{1}{\sqrt{ 2 }-\sqrt{ 3 }}+\displaystyle \frac{1}{\sqrt{ 3 }-2}$
③$\displaystyle \frac{1}{1+\sqrt{ 5 }+\sqrt{ 6 }}$
【高校数学】数Ⅰ-12 絶対値
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
$ a \gt 0 $のとき$| a |$=①____、
$a=0$のとき$| a |$=②____
$a \lt 0$のとき$| a |$=③____となる。
◎次の値をもとめよう。
④$| 7 |$=
⑤$| -3 |$=
⑥$| -0.2 |$=
⑦$| -4 |-| 3 |$=
⑧$| \sqrt{ 5 }-3 |$=
◎aが次の値をとるとき、$| a+4 |+| a-3 |$の値は?
⑨$5$
⑩$\sqrt{ 6 }$
この動画を見る
$ a \gt 0 $のとき$| a |$=①____、
$a=0$のとき$| a |$=②____
$a \lt 0$のとき$| a |$=③____となる。
◎次の値をもとめよう。
④$| 7 |$=
⑤$| -3 |$=
⑥$| -0.2 |$=
⑦$| -4 |-| 3 |$=
⑧$| \sqrt{ 5 }-3 |$=
◎aが次の値をとるとき、$| a+4 |+| a-3 |$の値は?
⑨$5$
⑩$\sqrt{ 6 }$
【高校数学】数Ⅰ-11 因数分解④(3次式の公式編)
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
$a^3+b^3=$①____________、
$a^3-b^3=$②____________
◎因数分解しよう。
③$x^3+27$
④$8x^3-y^3$
⑤$x^3-3x^2+6x-8$
⑥$x^3-5x^2-4x+20$
この動画を見る
$a^3+b^3=$①____________、
$a^3-b^3=$②____________
◎因数分解しよう。
③$x^3+27$
④$8x^3-y^3$
⑤$x^3-3x^2+6x-8$
⑥$x^3-5x^2-4x+20$