中1数学 - 質問解決D.B.(データベース) - Page 25

中1数学

【テスト対策 中1】5章-5

アイキャッチ画像
単元: #数学(中学生)#中1数学#空間図形#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①半径$8cm$、弧の長さ$6\pi cm$のおうぎ形の中心角の大きさと面積を求めなさい。

②中心角72、弧の長さ$4\pi cm$のおうぎ形の半径を求めなさい。

③半径15cmのおうぎ形で、弧の長さが半径6cmの円の周に等しいとき、
このおうぎ形の中心角の大きさを求めなさい。

図は動画内参照
この動画を見る 

【テスト対策 中1】5章-2

アイキャッチ画像
単元: #数学(中学生)#中1数学#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の$\Box$にあてはまることばを書きなさい。

・平面上で、図形をある点$O$を中心にして一定の角度だけまわすことを$\Box$といい、
点$O$を$\Box$という。
その中で、180℃の$\Box$を$\Box$という。

・平面上で、図形をある直線$\ell$を折り目として折り返すことを$\Box$といい、
直線$\ell$を$\Box$という。
$\Box$で移りあう図形は、$\Box$について$\Box$対で、
対応する点を結んだ線分は$\Box$と$\Box$に交わり、
その交点で$\Box$される。
この動画を見る 

【テスト対策 中1】5章-1

アイキャッチ画像
単元: #数学(中学生)#中1数学#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の$\Box$にあてはまることばや記号を書きなさい。

・2直線$AB、CD$が交わってできる角が直角のとき、
$AB$と$CD$は$\Box$であるといい、 ②$AB\Box CD$と表す。
また、2直線$\ell、m$が交わらないとき、$\ell$は$m$はといい、$AB \Box CD$と表す。

・図形の形と大きさを変えないで、位置だけを変えることを$\Box$という。

・平面上で、図形を一定の方向に、一定の長さだけずらすことを$\Box$といい、
このとき、対応する2点を結ぶ線分は、それぞれ$\Box$で長さが$\Box$。
この動画を見る 

【テスト対策 中1】4章-4

アイキャッチ画像
単元: #数学(中学生)#中1数学#比例・反比例
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$y$は$x$に比例し、$x = 3$のとき$y=6$である。
また、$x$の変域が$-4≦ x \leqq 3$のとき、その変域は$a\leqq y\leqq b$である。
$a、b$の値を求めよ。

②$y$は$x$に比例し、$ x = 2$ のとき$y=-5$である。
また、$x$の変域が$-6≦x≦-4$のとき、 $y$の変域を求めなさい。

③$y$は$x$に反比例し、$x=-4$のとき$y=-6$である。
また、$x$の変域が$2≦x≦4$のとき、$y$の変域を求めなさい。
この動画を見る 

【テスト対策 中1】4章-3

アイキャッチ画像
単元: #数学(中学生)#中1数学#比例・反比例
指導講師: とある男が授業をしてみた
問題文全文(内容文):
変数$x$のとる値が次の場合に、$x$の変域を不等号を使って表しなさい。

①$-2$より大きく$5$以下

②$-4$以上$7$未満

③$3$より小さい

④$-8$以上

⑤$2$より$7$より小さい

⑥$-1$未満
この動画を見る 

【テスト対策 中1】4章-1

アイキャッチ画像
単元: #数学(中学生)#中1数学#比例・反比例
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の2つの数量$x,y$について、$y$が$x$に比例するものには○、反比例するものには△、
どちらでもないものには×をつけなさい。
また、○と△については、$x,y$の関係を式に表しなさい。

①1本$x$円のジュース8本の代金$y$円

②時速50kmの速さで走る自動車は、$x$時間に$y$km進む

③身長$xcm$の人の体重は$y$kgである

④30km離れた場所に、時速$xkm$の自転車で行くと$y$時間かかる

⑤半径$xcm$の円の面積は$ycm$である

⑥120個のアメを$x$人に同じ数で分けると、1人分は$y$個である
この動画を見る 

【テスト対策 中2】4章-4

アイキャッチ画像
単元: #数学(中学生)#中1数学#角度と面積#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図のような図形について、次の各問に答えなさい。

①$\angle a+\angle b+\angle c+\angle d+\angle e$を求めなさい。

② ①を証明しなさい。ただし、解答欄の図に頂点や角度を
書き込んでよいものとする。(例:頂点$F,\angle F$)$

図は動画内参照
この動画を見る 

【テスト対策 中2】4章-2

アイキャッチ画像
単元: #数学(中学生)#中1数学#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図形について$\Box$にあてはまる式や数を書きなさい。
1つの頂点から、ほかの各頂点に対角線を引くと①個の三角形に分けられるので、
内角の和は②で計算できる。


③十二角形の内角の和を求めなさい。

④正九角形の1つの内角の大きさを求めなさい。

⑤正二十角形の1つの外角の大きさを求めなさい。

図は動画内参照
この動画を見る 

【テスト対策・中1】3章-3

アイキャッチ画像
単元: #数学(中学生)#中1数学#比例・反比例
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の比例式を解きなさい。

①$x:12=5:4$

②$9:x=2:\dfrac{4}{3}$

③$(x-4):3=(x-8):2$

比例式$16:x=22:\Box$について、$\Box$にあてはまる数は
$x$の値よりも3大きい。
このとき、$\Box$にあてはまる数を求めなさい。
この動画を見る 

【テスト対策・中1】3章-2

アイキャッチ画像
単元: #数学(中学生)#中1数学#方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の方程式の解き方はまちがっている。
ア~エで、最初にまちがえた式を選び、記号で答えなさい。
また、正しい解を求めなさい。

①$x-1=3(3+x)$

$x-1=9+3x$・・・ア
$x-3x=0-1$・・・イ
$-2x=8$・・・ウ
$x=-4$・・・エ

②$\dfrac{x}{4}-1=\dfrac{x-2}{3}$

$3x-12=4x-2$・・・ア
$3x-4x=-2+12$・・・イ
$-x=10$・・・ウ
$x=-10$・・・エ
この動画を見る 

【テスト対策・中1】3章-1

アイキャッチ画像
単元: #数学(中学生)#中1数学#方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の方程式を解きなさい。

①$5x-2=3x+4$

②$13=6-(2x-5)$

③$3(3x-2)=-3(5-x)$

④$\dfrac{1}{3}x+4=2+x$

⑤$\dfrac{x-1}{2}-2=\dfrac{2x-1}{3}$

⑥$0.1(x+1)=0.06(x+15)$
この動画を見る 

【テスト対策・中1】1章-3

アイキャッチ画像
単元: #数学(中学生)#中1数学#正の数・負の数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の計算をせよ.

①$5+(-7)$

②$-4-10$

③$12-(-7)$

④$-5+11$

⑤$-4+(-5)+7$

⑥$11-{5-(-3)}$

⑦$-1.5+3.2-0.9$

⑧$(-7.2)-(-4.5)-(+6.3)$

⑨$\dfrac{3}{2}-\dfrac{5}{6}-\left(-\dfrac{1}{3}\right)$

⑩$\dfrac{1}{6}-\dfrac{3}{4}-\left\{ -\dfrac{1}{3}-\left(\dfrac{5}{6}-\dfrac{3}{2}\right)\right\}$
この動画を見る 

【テスト対策・中1】1章-2

アイキャッチ画像
単元: #数学(中学生)#中1数学#正の数・負の数#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①絶対値が7である整数をすべて書きなさい.

②絶対値が4.1より小さい整数の個数を書きなさい.

③絶対値が3より大きく5以下になる整数をすべて書きなさい.

④絶対値が2以上7未満になる整数の個数を書きなさい.
この動画を見る 

【テスト対策・中1】1章-1

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の計算をしなさい.

①$7+5\times (-2)$

②$5-3\times (2-7)$

③$17-2^2 \times (-3)^2$

④$(-3)^3-(10-5^2)$

⑤$-4^2-(-4-17)\div 3$

⑥$\left(-\dfrac{2}{5}\right)\div (-0.6) \div \left(-\dfrac{8}{9}\right)$
この動画を見る 

【高校受験対策】数学-図形17

アイキャッチ画像
単元: #数学(中学生)#中1数学#空間図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図は,$BC = 6cm$の正四角すい$ABCDE$を表している.
次の①は指示にしたがって,$②,③$は最も簡単な数で答えよ.
ただし,根号を使う場合は$\sqrt{}$の中を最も小さい整数にすること.

①図に示す立体において,辺$BC$とねじれの位置にある辺を,
すべて書きなさい.

②辺$AB,AC,AD,AE$の中点をそれぞれ$F,G,H,I$とする.
正四角すい$ABCDE$を4点$F,G,H,I$を通る平面で分けたときにできる2つの立体のうち,
頂点$A$をふくまない立体の体積は,四角すい$FBCDE$の体積の何倍か求めよ.

③辺$AB$上に点$J$,辺$AC$上に,点$K$を,
$AJ:JB = AK: KC = 1:2$となるようにとると,
四角形$JKDE$の面積が$24cm^2$である.
このとき,辺$AC$の長さを求めよ.

図は動画内参照
この動画を見る 

【高校受験対策】数学-死守23

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#2次方程式#確率#立体図形#立体切断#立体図形その他#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$-5-(-9)$を計算せよ.

②$- 2 ^ 2 \times 3$を計算せよ.

③$xy ^ 2 \times 6y \div 3xy$を計算せよ.

④$(x - 7)(x - 4) + 8x$を計算せよ.

⑤1次方程式$x + 4 = 5(2x - 1)$を解け.

⑥2次方程式$x ^ 2 + 3x - 18 = 0$を解け.

⑦$2\lt \sqrt a \lt \dfrac{10}{3}$をみたす正の整数のは何個あるか.

⑧図1で,2直線$\ell,m$は平行であり,
$\triangle ABC$は$AB = AC$の二等辺三角形である.
また,頂点$A,C$はそれぞれ $\ell m$上にある.
$\angle x$の大きさを求めよ.

⑨図2は,底面の半径が$3cm$,母線の長さが$ 9cm$の円すいである.
この円すいの体積を求めよ.ただし,円周率は$\pi$とする.

⑩図3は,女子生徒20人のハンドボール投げの記録をヒストグラムに表したもので,
平均値は12.2mであった.
このヒストグラムから読み取れることについて述べた次のア~エのうち,
正しいものをすべて選び,その記号を書け.

ア 中央値 (メジアン) は,平均値よりも小さい.
イ 最頻値(モード)は,平均値よりも大きい.
ウ 記録が12m未満の生徒は,全体の半数以上である.
工 記録が16m以上の生徒は,全体の20%である.

⑪図4で,数直線上を動く点$P$は,最初,原点$O$にある.
点$P$は,1枚の硬貨を1回投げるごとに,表が出れば正の方向に2だけ移動し,
裏が出れば負の方向に1だけ移動する.
硬貨を3回投げて移動した結果,点$P$が原点$O$にある確率を求めよ.

図は動画内参照
この動画を見る 

【高校受験対策】数学-死守20

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#数と式#比例・反比例#確率#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#単位・比と割合・比例・反比例
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$(-2)+11$を計算しなさい.

②$(- 4) ^ 2 \times (- 3)$を計算しなさい.

③$(6a - 15b) \div 3$を計算しなさい.

④$(2x - 1)(x + 3)$を展開しなさい.

⑤$x ^ 2 - (y + 3) ^ 2$ を因数分解しなさい.

⑥方程式$\dfrac{x - 2}{4} + \dfrac{2 - 5x}{6} = 1$を解きなさい.

⑦$y$は$x$に反比例し,$x = 2$ のとき $y = - 3$ である.
このとき,$y$を$x$の式で表しなさい.

⑧次のア~オの中から,無理数をすべて選び,記号で答えなさい.

ア.$\dfrac{1}{3}$
イ.$\sqrt5$
ウ.$0.25$
エ.$-2\sqrt3$
オ.$\sqrt6$

⑨右の図のア~エは,関数$y = ax ^ 2$のグラフである.
次の(1),(2)の問いに答えなさい.

(1)関数$y=\dfrac{1}{2}x^2$のグラフを,ア~エから選びなさい.

(2)$x$の値が$-2$から$-1$まで増加するときの
変化の割合が最も大きい関数のグラフを,ア~エから選びなさい.
また,そのときの変化の割合を求めなさい.

⑩袋の中に$0,1,2,3$の数字が1つずつ書かれた4個の玉が入っている.
この袋から玉を1個取り出して玉に書かれた数字を確認して,
それを袋の中にもどしてから,また1個取り出すとき,

(1)取り出した2個の玉に書かれていた数字が同じになる確率を求めなさい.

(2)次の$\Box$に適することばを入れて,
求める確率が$\dfrac{1}{4}$となる問題を1つ完成させなさい.
「取り出した2個の玉の数字の積が$\Box$になる確率を求めなさい.」

図は動画内参照
この動画を見る 

【高校受験対策】数学-死守19

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#2次方程式#比例・反比例#確率#文章題#文章題その他#標本調査
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$8-(-13)$を計算しなさい.

②$(- 3) ^ 2 + \left(-\dfrac{1}{3}\right)\times 6$ を計算しなさい.

③$(7a - 4b) + \dfrac{1}{2}(2b - 6a)$ を計算しなさい.

④方程式$ 0.2(x - 2) = x + 1.2$ を解きなさい.

⑤$\sqrt{48}-\sqrt{27}+5\sqrt3$を計算しなさい.

⑥二次方程式$x ^ 2 + 7x + 5 = 0 $を解きなさい.

⑦$y$は$x$の2乗に比例し,
$ x = 2 $のとき,$y=1$である.
$y$を$x$の式で表しなさい.

⑧右の資料は,ある生徒が受けた第1回から第6回までの数学のテストの得点の記録のうち,
第1回から第5回までの得点の記録である.
第1回から第6回までの得点の中央値が80点となるとき,
第6回のテストの得点を求めなさい.

$\boxed{83 \quad 78\quad 74\quad 77 \quad 96}$ (単位:点)

⑨$m$と$n$は連続する正の整数である.
次のア~エのうちから,次の値が偶数となるものを一つ選び,
符号で答えなさい.ただし,$m \lt n$とする.

ア.$m+n$
イ.$n-m$
ウ.m + n + 2$
エ.$mn$

⑩箱の中に同じ大きさの白い球だけがたくさん入っている.
この白い球が何個あるか,標本調査を行って推測しょうと考えた.
そこでオレンジ色の球200個を箱に入れてよくかき混ぜ,
そこから50個を無作為に抽出したところ,
オレンジ色の球が4個含まれていた.
はじめに箱の中に入っていた白い球の個数を推測しなさい

①箱の中に$②,③,④,⑥,⑧,⑨$のカードがそれぞれ1枚ずつ入っている.
この箱から同時に2枚取り出すとき,
取り出した2枚のカードに書かれた数の最小公倍数が,
1桁の数になる確率を求めなさい.
ただし,どのカードの取り出し方も同様に確からしいものとする.
この動画を見る 

【高校受験対策】数学-死守18

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#平方根#2次方程式#比例・反比例#確率#点と直線
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の各問いに答えなさい.

①$15 - 9\div 3$を計算しなさい.

②$\dfrac{2}{7}\times \dfrac{3}{4}$を計算しなさい .

③$-5-3+7$を計算しなさい.

④$(3x - 2y) + 5(x - 4y)$ を計算しなさい.

⑤$\begin{eqnarray}
\left\{
\begin{array}{l}
3x+y=2 \\
x+2y=-6
\end{array}
\right.
\end{eqnarray}$
を解きなさい.

⑦$\sqrt{15}\times \sqrt6 +\sqrt{10}$を計算しなさい.

⑧$x^2-2x-63$を因数分解しなさい.

⑧方程式$ 2x ^ 2 + 9x + 8 = 0$ を解きなさい.

⑨右の図のように,平行な2直線$\ell,m$があり,直線上に2点$A,B$
直線$m$上に2点$C,D$がある.
$AB=BC, \angle BCD = 42°$のとき,$\angle BAC$の大きさを求めなさい.

⑩下の表は,$y$が$x$に反比例する関係を表したものです.
表のⒶにあてはまる数を求めなさい.

⑪数字を書いた3枚のカード$①,②,③$が袋$A$の中に,
数字を書いた5枚のカード$①,②,③,④,⑤$が袋$B$の中に入っています.
それぞれの袋からカードを1枚ずつ取り出すとき,
その2枚のカードに書いてある数の積が奇数になる確率を求めなさい.

図は動画内参照
この動画を見る 

【高校受験対策】数学-死守15

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#2次方程式#空間図形#確率#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の各問に答えなさい.

①$6x-x$を計算しなさい.

②$6+(-2)\times 4$を計算しなさい.

③$\sqrt{45}-2\sqrt5$を計算しなさい.

④$x=18$のとき,
$x^2-6x-16$の値を求めなさい.

⑤2次方程式$3x^2+7x+1=0$を解きなさい.

⑥連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
3x+2y=18 \\
x+y=7
\end{array}
\right.
\end{eqnarray}$を解きなさい.

⑦関数$y=\dfrac{1}{2}x^2$の値が1から5まで増加するときの変化の割合が,
一次関数$y = ax + 2$ の変化の割合と等しくなりました.
$a$の値を求めなさい.

⑧図1のような円錐の形のチョコレートがあります.
このチョコレートの8分の1の量をもらえることになり,
底面と平行に切って頂点のあるほうをもらうことにしました.
母線の長さを$8cm$とすると,
頂点から母線にそって何$cm$のところを切ればよいかを求めなさい.

⑨図2で,$\angle A=48$の$△ABC$があり,$\angle B,\angle C$の
二等分線をそれぞれかいたときの交点を$D$とします.
このとき,$\angle BDC$の大きさを求めなさい.

➉図3のように,円周上に18個の点が等間隔に並んでおり,
そのうちの点を$P$とします.
1個の黒石を点$P$上に置き,この黒石を,
1から6までの目が出るさいころを1回投げるごとに,
出た目の数だけ円周上の点上を順に動かします.
動かし方は,偶数の目が出たときは右回りに,
奇数の目が出たときは左回りに動かすものとします.
さいころを3回投げたとき,黒石が点$P$に戻っている確率を求めなさい.

図は動画内を参照
この動画を見る 

【高校受験対策】数学-図形14(動画内で13と間違えてます。汗)

アイキャッチ画像
単元: #数学(中学生)#中1数学#空間図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
鉄でできた円錐の形をしたおもりがある.
図1のようにおもりを倒し,すべらないように平面上を転がしたところ,
おもりは5回転して半径$10cm$の円をちょうど3周した.
このとき,次の各問いに答えなさい.ただし,円周率は$\pi$とする.

①半径$10cm$の円の円周の長さを求めなさい.

②このおもりの底面の半径を求めなさい.

③水が入っている円柱の形をした水そうがあり,水の高さは$ 2cm$である.
ここに図1のおもりを図2のように入れると,水の高さが最初の高さの2倍になった.
この水そうの底面の半径を求めなさい.
ただし,水そうの厚みは考えないものとする.

図は動画内を参照
この動画を見る 

【高校受験対策】数学-図形13

アイキャッチ画像
単元: #数学(中学生)#中1数学#空間図形#立体図形#立体図形その他
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図のような,底面の直径$AB$が$6cm$,
母線の長さが$6cm$の円錐で,母線$OB$の中点を$P$とします.
このとき,次の各問いに答えなさい.

①点$A$から$B$まで,側面上を半周してひもをかけます.
ひもの長さが最短になるときのひもの長さを求めなさい.

②点$A$から$P$まで,側面上を半周してひもをかけます.
ひもの長さが最短になるときのひもの長さを求めなさい.

図は動画内を参照
この動画を見る 

【高校受験対策】数学-死守9

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#連立方程式#2次方程式#円#表とグラフ#表とグラフ・集合
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の各問に答えよ.

①$- 7 + 8 \times \left(-\dfrac{1}{4}\right)$を計算せよ.

②$9(a + b) - (a + 3b) $を計算せよ.

③$(\sqrt7 + 6)(\sqrt7 - 2)$ を計算せよ.

④一次方程式$ x - 5 = 3x + 1 $を解け.

⑤連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
4x-y=9 \\
x-6y=8
\end{array}
\right.
\end{eqnarray}$

⑥一次方程式 $x ^ 2 - 12x + 35 = 0 $を解け.

⑦右の表は,
ある中学校の3年生男子全体のハンドボール投げの記録を,
度数分布表に整理したものである.
26m以上投げた生徒の人数は,
3年生男子全体の何%か.

⑧右の図で,2点$C,D$は,線分$AB$を直径とする半円$O$の
$\stackrel{\huge\frown}{AB}$上にある点で,
$\stackrel{\huge\frown}{AC}=\dfrac{4}{9}\stackrel{\huge\frown}{AB},\stackrel{\huge\frown}{BD}=\dfrac{1}{3}\stackrel{\huge\frown}{AB}$である.
線分$AD$と線分$BC$の交点を$E$とするとき,
$\angle AEC$の大きさは何度か.

図は動画内を参照
この動画を見る 

【高校受験対策】数学-死守8

アイキャッチ画像
単元: #中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#文章題#文章題その他#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$4 \times (5+2)$を計算しなさい.

②$\dfrac{2}{3}-\dfrac{1}{5}$を計算しなさい.

③$24\div (-6)$を計算しなさい.

④$3(2x-y)-(x+5y)$を計算しなさい.

⑤連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
x+3y=8 \\
2x-y=-5
\end{array}
\right.
\end{eqnarray}$を解きなさい.

⑥$x^2+x-56$を因数分解しなさい.

⑦$(\sqrt{27}-\sqrt3)\times \sqrt2$を計算しなさい.

⑧方程式$x^2-5x+1=0$を解きなさい.

⑨下の図のように,$\triangle ABC$の辺$BC$を延長して$CD$とし,
辺$CA$を延長して$AE$とします.
$\angle ABC=41°,\angle ACD=124°$のとき,
$\angle BAE$の大きさは何度ですか.

⑩1箱60円のチョコレートと1個40円のあめが売られています.
このチョコレートとあめを買うとき,代金をちょうど500円にするには,
買い方は全部で何通りありますか.

図は動画内を参照
この動画を見る 

【高校受験対策】数学-死守6

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#2次方程式#比例・反比例#円
指導講師: とある男が授業をしてみた
問題文全文(内容文):
1.次の計算をしなさい.

①$5-7$

②$- 6 + 9 \div \dfrac{1}{4}$

③$3\sqrt2\times \sqrt8$

④$2(2a-3b)+(a-5b)$

2.次の問いに答えなさい.

⑤右の図1のように,線分$AB$を直径とする円があります.
円の中心$O$を定規とコンパスを使って作図しなさい.
ただし,点を示す記号$O$をかき入れ,作図に用いた線は消さないこと.

⑥右の図2のような反比例の関係$y =\dfrac{a}{x}$のグラフがあります.
点$O$は原点とします.$a$の値を求めなさい.

⑦連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
2x + y = 5 \\
y=4x-1
\end{array}
\right.
\end{eqnarray}$を解きなさい.

⑧二次方程式$x^2+5x+1=0$を解きなさい.

図は動画内を参照
この動画を見る 

【高校受験対策】数学-死守4

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#2次方程式#比例・反比例
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の各問に答えよ.

①$7+3\times (-5)$を計算せよ.

②$3(2a+1)-4(a+2)$を計算せよ.

③$a=-3,b=6$のとき,
$-a^2+2b$の値を求めよ.

④$\dfrac{27}{\sqrt3}-\sqrt{48}$を計算せよ.

⑤1次方程式$x-9=3(x-1)$を解け.

⑥2次方程式$x(x-6)=-4(x-2)$を解け.

⑦$y$は$x$に反比例し,$x=-3$のとき,$y=-8$である.
$x=-4$のときの$y$の値を求めよ.
この動画を見る 

【高校受験対策】死守-3

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#連立方程式#2次方程式#1次関数#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の各問に答えよ.

①$6+4 \times \left(-\dfrac{1}{2}\right)$を計算せよ.

②$8a+b-(a-7b)$を計算せよ.

③$(\sqrt5 +\sqrt 3)(\sqrt 5-\sqrt3)$を計算せよ.

④1次方程式$9x+2=8(x+1)$を解け.

⑤連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
3x+y=4 \\
6x+5y=-7
\end{array}
\right.
\end{eqnarray}$を解け.

⑥2次方程式$x^2-8x-9=0$を解け.

⑦関数$y=\dfrac{1}{3}x^2$について,
$x$の値を3から9まで増加するときの割合を求めよ.
この動画を見る 

【高校受験対策】死守-1

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#2次方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$24 \div (7-4)$を計算しなさい.

②$\dfrac{1}{2}+\dfrac{2}{5}$を計算しなさい.

③$7+(-3)\times 4$を計算しなさい.

④$(5x-y)-3(x-5y)$を計算しなさい.

⑤下の連立方程式を解きなさい.
$\begin{eqnarray}
\left\{
\begin{array}{l}
x = 3y-2 \\
4x-7y=2
\end{array}
\right.
\end{eqnarray}$

⑥$\sqrt{32}-\sqrt 8+\sqrt2 $を計算しなさい.

⑦$x^2-36y^2$を因数分解しなさい.

⑧方程式$x^2+7x+2=0$を解きなさい.
この動画を見る 

【受験対策】数学-図形11

アイキャッチ画像
単元: #数学(中学生)#中1数学#空間図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図は,$ AB = 3cm,BC = 2cm,\angle ABC = 90°$の
直角三角形$ABC$を底面とし,
点$D$を頂点とする三角錐であり,
$AD=6cm,\angle ABD= \angle CBD = 90°$である.
また,点$E$は辺$AD$上の点で,$AE = 2cm$である.
このとき,次の各問いに答えなさい.

①この三角錐の体積を求めなさい.

②この三角錐の表面に,点$C$から辺$BD$を通るように,
点$E$まで細い糸をかける.
かけた糸の長さが最も短くなるとき,その糸の長さを求めなさい.
ただし糸はのびたり縮んだりしないものとする.

図は動画内参照
この動画を見る 

【受験対策】数学-証明3

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#平行と合同#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右図のように,$\triangle ABC$の辺$BC$上に点$D$がある.
3点$A,B,D$を通る円と,辺$AC$との交点を$E$とするとき,
次の各問いに答えなさい.

①$\angle AEB=47°$のとき,$\angle ADC$の大きさを求めなさい.

②$AE=BD$のとき,$\triangle ACD\equiv \triangle BCE$を証明しなさい.

図は動画内参照
この動画を見る 
PAGE TOP