中3数学
【数学】中3-11 式の計算の利用① くふう編
単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
『こういう”くふう”をしたよ!』という
のがわかるように途中式を書こう!!
①$15.5^2-14.5$
②$52 \times 48$
③$201^2$
④$99^2$
⑤$1013 \times 1010-1010^2$
この動画を見る
『こういう”くふう”をしたよ!』という
のがわかるように途中式を書こう!!
①$15.5^2-14.5$
②$52 \times 48$
③$201^2$
④$99^2$
⑤$1013 \times 1010-1010^2$
【数学】中3-8 因数分解③ ちょい応用編
単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
もし①____ができるなら、
先に①をしてから因数分解をしよう!!
②$2x^2-72$
③$3x^2+9xy-30y$
④$-x^2-2x+35$
⑤$12x^2y-18xy^2$
⑥$9x^2-\displaystyle \frac{1}{16}$
⑦$25x^2-20xy+4y^2$
⑧$-16+y^2+6y$
⑨$-2x^2+10x-12$
⑩$\displaystyle \frac{1}{2}x^2-8$
この動画を見る
もし①____ができるなら、
先に①をしてから因数分解をしよう!!
②$2x^2-72$
③$3x^2+9xy-30y$
④$-x^2-2x+35$
⑤$12x^2y-18xy^2$
⑥$9x^2-\displaystyle \frac{1}{16}$
⑦$25x^2-20xy+4y^2$
⑧$-16+y^2+6y$
⑨$-2x^2+10x-12$
⑩$\displaystyle \frac{1}{2}x^2-8$
【数学】中3-9 因数分解④ もっと応用編
単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
計算せよ。
①$(x-5)(x-1)-12$
②$(x+6)^2-3(x+6)-10$
③$(a-b)^2-c^2$
④$4x(6-y)-y+6$
⑤$(2x+1)^2-3(x+1)(x-1)$
⑥$(a-1)^2+6(a-1)+9$
この動画を見る
計算せよ。
①$(x-5)(x-1)-12$
②$(x+6)^2-3(x+6)-10$
③$(a-b)^2-c^2$
④$4x(6-y)-y+6$
⑤$(2x+1)^2-3(x+1)(x-1)$
⑥$(a-1)^2+6(a-1)+9$
【数学】中3-7 因数分解②
単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
空欄を埋め、計算せよ。
$a^2+2ab+b^2=$①____
$a^2-2ab+b^2=$②____
$a^2-b^2=$③____
$x^2+(a+b)x+ab=$④____
⑤$x^2-81=$
⑥$x^2+6x+9=$
⑦$x^2-8x+16=$
⑧$x^2+5x+6=$
⑨$x^2-18x+81=$
⑩$x^2-x-12=$
⑪$x^2-25y^2=$
⑫$x^2+12xy+36y^2=$
⑬$x^2+10x+16=$
⑭$16x^2-9y^2=$
⑮$x^2-x-2=$
⑯$x^2+2x-15=$
この動画を見る
空欄を埋め、計算せよ。
$a^2+2ab+b^2=$①____
$a^2-2ab+b^2=$②____
$a^2-b^2=$③____
$x^2+(a+b)x+ab=$④____
⑤$x^2-81=$
⑥$x^2+6x+9=$
⑦$x^2-8x+16=$
⑧$x^2+5x+6=$
⑨$x^2-18x+81=$
⑩$x^2-x-12=$
⑪$x^2-25y^2=$
⑫$x^2+12xy+36y^2=$
⑬$x^2+10x+16=$
⑭$16x^2-9y^2=$
⑮$x^2-x-2=$
⑯$x^2+2x-15=$
【数学】中3-6 因数分解①
単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
空欄を埋め、計算せよ。
因数分解にも公式があるんだけど、
その前に覚えなきゃいけない技が①____!!
この技は、すべて項にはいっている②____や③____を
( )の前に出すことなんだ!!
◎技を練習しよう!!
④$ax-bx$
⑤$4x+6y$
⑥$2x^2-4x$
⑦$xy^2-2x^2y$
⑧$9ab^2+3ab$
⑨$4xy^2+6x^2y^2-2xy$
⑩$-5abc-10ab+15ac$
この動画を見る
空欄を埋め、計算せよ。
因数分解にも公式があるんだけど、
その前に覚えなきゃいけない技が①____!!
この技は、すべて項にはいっている②____や③____を
( )の前に出すことなんだ!!
◎技を練習しよう!!
④$ax-bx$
⑤$4x+6y$
⑥$2x^2-4x$
⑦$xy^2-2x^2y$
⑧$9ab^2+3ab$
⑨$4xy^2+6x^2y^2-2xy$
⑩$-5abc-10ab+15ac$
【数学】中3-5 素数と素因数分解
単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
素数・・・①____とその数以外に②____
をもたない数
③____ ・・・・ 整数がいくつかの積の形で
表されたとき、その1つ1つの数。
(例)$30=2 \times 3 \times 5→$③は$2,3,5$
④20以下の素数をすべて書こう!!
1.2.3.4.5.6.7.8.9.10
11.12.13.14.15.16.17.18.19.20
⑤30以上40未満の素数をすべて書こう!!
ほとんどの素数が ⑥____なんだ!!
◎素因数分解しよう!!
⑦$28$
⑧$72$
⑨$180$
⑩54にできるだけ小さい自然数のをかけて、
ある自然数の2乗にしたい。$n$はいくつで、その時、
どんな数の2乗になるかな?
この動画を見る
素数・・・①____とその数以外に②____
をもたない数
③____ ・・・・ 整数がいくつかの積の形で
表されたとき、その1つ1つの数。
(例)$30=2 \times 3 \times 5→$③は$2,3,5$
④20以下の素数をすべて書こう!!
1.2.3.4.5.6.7.8.9.10
11.12.13.14.15.16.17.18.19.20
⑤30以上40未満の素数をすべて書こう!!
ほとんどの素数が ⑥____なんだ!!
◎素因数分解しよう!!
⑦$28$
⑧$72$
⑨$180$
⑩54にできるだけ小さい自然数のをかけて、
ある自然数の2乗にしたい。$n$はいくつで、その時、
どんな数の2乗になるかな?
【For you 動画-4(追加)】 中3数学-別解答バージョン
単元:
#数学(中学生)#中3数学#2次関数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
【別解】
$P(x、y)$とおく。
$P(x、y)$、$(4,0)$の中点が$(-4,8)$
$\displaystyle \frac{x+4}{2}=-4 → x+4=-8$
$x=-12$
$\displaystyle \frac{y+\xcancel{0}}{2}=8 → y=16$
※図は動画内参照
この動画を見る
【別解】
$P(x、y)$とおく。
$P(x、y)$、$(4,0)$の中点が$(-4,8)$
$\displaystyle \frac{x+4}{2}=-4 → x+4=-8$
$x=-12$
$\displaystyle \frac{y+\xcancel{0}}{2}=8 → y=16$
※図は動画内参照
【For you動画-4】 中3数学-二次関数
単元:
#数学(中学生)#中3数学#2次関数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
問いに答えよ。
①$a.b(b \lt 0)$の値は?
②直線$AB$の式は?
③図の二次関数について、 $X$の変域が$-2 \leqq x \leqq 4$のときその変域は?
④$X=t$の直線をひき、交点を図のように$P.Q$とする。
$PQ=8$となるしをだそう!
ただし-3 \leqq t \leqq 1とする。
⑤点$P$は直線$AB$上の点。
四角形$ACOB$と$\triangle ACP$の面積
が等しくなる点$P$の座標を$2$つだそう!
※図は動画内参照
この動画を見る
問いに答えよ。
①$a.b(b \lt 0)$の値は?
②直線$AB$の式は?
③図の二次関数について、 $X$の変域が$-2 \leqq x \leqq 4$のときその変域は?
④$X=t$の直線をひき、交点を図のように$P.Q$とする。
$PQ=8$となるしをだそう!
ただし-3 \leqq t \leqq 1とする。
⑤点$P$は直線$AB$上の点。
四角形$ACOB$と$\triangle ACP$の面積
が等しくなる点$P$の座標を$2$つだそう!
※図は動画内参照
【中2 数学】 2-③⑨ 一次関数の利用③ ・ 動点編
単元:
#数学(中学生)#中3数学#2次関数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
中2 数学 一次関数の利用③ ・ 動点編
以下の問に答えよ
毎秒1cmで A → B → C → D (動点 P ) 、△ ADP が y ㎠
① 動点 P が AB 上
② 動点 P が BC 上
③ 動点 P が CD 上
※図は動画内参照
この動画を見る
中2 数学 一次関数の利用③ ・ 動点編
以下の問に答えよ
毎秒1cmで A → B → C → D (動点 P ) 、△ ADP が y ㎠
① 動点 P が AB 上
② 動点 P が BC 上
③ 動点 P が CD 上
※図は動画内参照