【中学数学】多項式の加法減法の問題演習~計算ミスしない方法~ 1-3【中2数学】 - 質問解決D.B.(データベース)

【中学数学】多項式の加法減法の問題演習~計算ミスしない方法~ 1-3【中2数学】

問題文全文(内容文):
$\displaystyle
(1)\, (3x+2y)+(x+7y)
$
$\displaystyle
(2)\, (5a-3b)+(-a+6b)
$
$\displaystyle
(3)\, (3x^2+y)+(7x^2+3)
$
$\displaystyle
(4)\, (4x+y)-(20x+5y)
$
$\displaystyle
(5)\, (s+3t)-(-s+2t)
$
$\displaystyle
(6)\, (r+x^2)-(x^2-4r)
$
$\displaystyle
(7)\, (6a-3b)-(6a-2b)
$
$\displaystyle
(8)\, (x^2-x-3)-(6x^2+3x-1)
$
$\displaystyle
(9)\, (6x-6y-3)+(5x-4y-8)
$
$\displaystyle
(10)\, (11a-7b-c)-(a-4b+c)
$
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$\displaystyle
(1)\, (3x+2y)+(x+7y)
$
$\displaystyle
(2)\, (5a-3b)+(-a+6b)
$
$\displaystyle
(3)\, (3x^2+y)+(7x^2+3)
$
$\displaystyle
(4)\, (4x+y)-(20x+5y)
$
$\displaystyle
(5)\, (s+3t)-(-s+2t)
$
$\displaystyle
(6)\, (r+x^2)-(x^2-4r)
$
$\displaystyle
(7)\, (6a-3b)-(6a-2b)
$
$\displaystyle
(8)\, (x^2-x-3)-(6x^2+3x-1)
$
$\displaystyle
(9)\, (6x-6y-3)+(5x-4y-8)
$
$\displaystyle
(10)\, (11a-7b-c)-(a-4b+c)
$
投稿日:2022.06.04

<関連動画>

【少しでも考えやすく…!】文章題:名古屋国際高等学校~全国入試問題解法

単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#高校入試過去問(数学)#名古屋国際高等学校
指導講師:
問題文全文(内容文):
$今年のある会社の入社人数は、昨年に比べて男性は2割減少、女性は1割増加し、全体では1割減少した。$
$昨年の男性の入社者人数は、昨年の男女合わせた全体の入社人数の何倍であったかを求めなさい$
この動画を見る 

高等学校入試予想問題:宮崎県~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#1次関数#確率#2次関数#三角形と四角形
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$\boxed{1}$
(1)$27xy\times x^2\div(-9x^2y)$を計算せよ.
(2)$3(x+6y)-2(x+8y)$を計算せよ.
(3)$y$は$x$に比例し,$x=-3$のとき,$y=36$である.
このとき,$y$を$x$の式で表せ.
(4)箱の中に4本のくじ,そのうち3本が当たり.
Aさんが1本引いて戻す.同様にBさんが引く.
2人共,当たりくじをひく確率は?

$\boxed{2}$
$y=x^2$上に$A(2,4)$である.
点$B$は$y$軸上,$y$座標が4より大きい範囲で動く.
$C,D$は,$B$を通り,$x$軸と平行な直線と$y=x^2$の交点である.

(1)点$E$の$x$座標が5となるとき,$\triangle AOE$の面積は?
(2)$CA=AE$となるとき,直線$DE$の傾きは?

$\boxed{3}$

(1)$\triangle AED \backsim \triangle CFD$であることの証明をせよ.
(2)$AE=&,EB=5,BC=2,CF=8$のとき,
①$AC=?$ ②$AD=?$ ③$DF=?$ ④$\Box ABFD$の面積は?
この動画を見る 

【高校受験対策/数学】死守64

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#方程式#式の計算(単項式・多項式・式の四則計算)#平方根#空間図形#確率#文字と式#標本調査
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守64

①$\sqrt{26}\div\sqrt{2}$を計算しなさい

➁$2\sqrt{7} \times 3\sqrt{2}$を計算しなさい。

③$5\sqrt{3}+\sqrt{96}-8\sqrt{6}-\sqrt{27}$を計算しなさい。

④$5 \lt \sqrt{a} \leqq 6$を満たす整数$a$の個数を求めなさい。

⑤3点$A(2,1)$、$B(6,-5)$、$C(k,10)$が一直線上にあるとき、$k$の値を求めなさい。

⑥右の表は、あるクラスの女子20人の握力の記録を度数分布表にまとめたものです。
この20人の記録の平均値を求めなさい。

⑦大、小2個のさいころを同時に投げるとき、大きいさいころの出た目の数を$a$、小さいさいころの出た目の数を$b$とします。
このとき$\frac{b}{a}$が整数となる確率を求めなさい。

⑧A地点からB地点に行くのに、A地点から途中にあるC地点までは時速$a$ kmで2時間歩き、C地点からB地点までは時速$b$ kmで3時間歩きました。
このとき平均の速さは時速何kmか、$a$、$b$を用いた式で表しなさい。

⑨右の図は、1辺の長さが9cmの立方体から、頂点Aに集まる 3辺 AB、AD、AEをそれぞれ3等分する点のうち、
頂点Aに近い方の3点、P、Q、Rを通る平面で頂点Aを切り取り、同様に頂点B、C、Dも切り取ったものです。
このとき立体の体積は何㎥か求めなさい。
この動画を見る 

3=4になるらしい~0で割ったらダメな理由~

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#式の計算(単項式・多項式・式の四則計算)#文字と式
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
3=4 0で割ったらダメな理由説明動画です
この動画を見る 

【数学】中2-9 文字式の利用① 基本編

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
空欄を埋めよ。
整数$m,n$を使ってどう表す?
①3の倍数→____
②7の倍数→____
③偶数→____
④奇数→____
⑤連続する3つの偶数
→____,____,____
⑥連続する3つの奇数
→____,____,____
⑦連続する3つの整数
→____,____,____
⑧2つの偶数
→____,____
⑨2つの奇数
→____,____
⑩3で割ると2余る数
→____

◎連続する3つの奇数の和は
3の倍数になることを説明しよう!

【説明】$n$を⑪____とすると、
連続する3つの奇数は、それぞれ
⑫____,⑬____,⑭____と表される。
( ⑫ )+( ⑬ )+( ⑭ )
⑮____=⑯____
⑰____は⑱____なので、
⑯____は3の倍数になる。
よって、連続する3つの奇数の和は
3の倍数になる。
この動画を見る 
PAGE TOP