式の計算(単項式・多項式・式の四則計算)
【高校数学】定期テスト直前対策!個別指導プロ講師が厳選したプレテスト〜多項式の展開、因数分解〜【数学のコツ】
単元:
#数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
個別指導プロ講師が厳選したプレテスト〜多項式の展開、因数分解を解説していきます.
この動画を見る
個別指導プロ講師が厳選したプレテスト〜多項式の展開、因数分解を解説していきます.
分数式の計算
単元:
#数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師:
数学を数楽に
問題文全文(内容文):
$\frac{a-b}{ab}$+$\frac{b-c}{bc}$
この動画を見る
$\frac{a-b}{ab}$+$\frac{b-c}{bc}$
式の値 2通りで解説
単元:
#数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師:
数学を数楽に
問題文全文(内容文):
$\frac{1}{x}=0.4$のとき$\frac{1}{x+2}=$
この動画を見る
$\frac{1}{x}=0.4$のとき$\frac{1}{x+2}=$
気付けば一瞬!!式の値 受験生よ。努力が実ることを証明せよ。
単元:
#数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師:
数学を数楽に
問題文全文(内容文):
$x+\frac{1}{x}=99$のとき
$\frac{2x^2+102x+2}{100x}$の値は?
この動画を見る
$x+\frac{1}{x}=99$のとき
$\frac{2x^2+102x+2}{100x}$の値は?
【本当に解はあるのか!?】整数:日本大学習志野高等学校~全国入試問題解法
単元:
#数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#高校入試過去問(数学)#日本大学習志野高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
3つの自然数$ x,y,z(x \lt y \lt z)$である.
$ x+y+z=20 $
$ xyz=60 $ 満たす.
このとき, $ x=\Box,y=\Box,z=\Box $
日大習志野高校過去問
この動画を見る
3つの自然数$ x,y,z(x \lt y \lt z)$である.
$ x+y+z=20 $
$ xyz=60 $ 満たす.
このとき, $ x=\Box,y=\Box,z=\Box $
日大習志野高校過去問
【中学数学】数学用語チェック絵本 中2の用語”せめて”これだけは覚えよう!!act2まとめ
単元:
#数学(中学生)#中1数学#中2数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#資料の活用#1次関数#平行と合同#確率#三角形と四角形
指導講師:
理数個別チャンネル
問題文全文(内容文):
中2で登場する数学用語の中で、せめてこれだけは覚えてほしいものをピックアップ!act2vol.1~7の方も見てね♪
この動画を見る
中2で登場する数学用語の中で、せめてこれだけは覚えてほしいものをピックアップ!act2vol.1~7の方も見てね♪
【ひるまず進め!】計算:法政大学高等学校~全国入試問題解法
単元:
#数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#高校入試過去問(数学)#法政大学高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \left(1.2\div 0.375+\dfrac{-2^3}{3}\times 4.2\right)\div \left(-\dfrac{2}{3}\right)^3$を計算しなさい.
法政大高校過去問
この動画を見る
$ \left(1.2\div 0.375+\dfrac{-2^3}{3}\times 4.2\right)\div \left(-\dfrac{2}{3}\right)^3$を計算しなさい.
法政大高校過去問
【ルールを抑えるのが大切!】文字式:福岡大学附属大濠高等学校~全国入試問題解法
単元:
#数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#高校入試過去問(数学)#福岡大学附属大濠高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \left(\dfrac{2x+5y}{3}-\dfrac{x+7y}{6}\right)\div \dfrac{xy}{2}$を計算し,簡単にすると$ \Box $である.
福岡大学附属大濠高等学校過去問
この動画を見る
$ \left(\dfrac{2x+5y}{3}-\dfrac{x+7y}{6}\right)\div \dfrac{xy}{2}$を計算し,簡単にすると$ \Box $である.
福岡大学附属大濠高等学校過去問
計算したらどれが1番大きいの? おかやま山陽(岡山)
単元:
#数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師:
数学を数楽に
問題文全文(内容文):
1番大きいのは?
(1)71×79
(2)72×78
(3)73×77
(4)74×76
(5)75×75
おかやま山陽高校
この動画を見る
1番大きいのは?
(1)71×79
(2)72×78
(3)73×77
(4)74×76
(5)75×75
おかやま山陽高校
暗算で解ける? 高知中央
123456789✖️9➕10🟰?
穴埋め 大阪教育大附属平野
単元:
#数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
▢を埋めよ
\begin{array}{r}
▢▢ \\[-3pt]
\underline{\times\phantom{0}▢▢}\\[-3pt]
▢▢▢ \\[-3pt]
\underline{\phantom{0}▢▢▢\phantom{0}} \\[-3pt]
9216
\end{array}
大阪教育大学附属高等学校平野校舎
この動画を見る
▢を埋めよ
\begin{array}{r}
▢▢ \\[-3pt]
\underline{\times\phantom{0}▢▢}\\[-3pt]
▢▢▢ \\[-3pt]
\underline{\phantom{0}▢▢▢\phantom{0}} \\[-3pt]
9216
\end{array}
大阪教育大学附属高等学校平野校舎
小学生も解ける高校入試問題 大阪教育大附属
単元:
#数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
109×1009+91×991
大阪教育大学附属高等学校平野校舎
この動画を見る
109×1009+91×991
大阪教育大学附属高等学校平野校舎
丸暗記するな
単元:
#数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師:
数学を数楽に
問題文全文(内容文):
式の展開
$(a+b)^2 = a^2+2ab+b^2$
$(a-b)^2 = a^2-2ab+b^2$
この動画を見る
式の展開
$(a+b)^2 = a^2+2ab+b^2$
$(a-b)^2 = a^2-2ab+b^2$
【中学数学】数学用語チェック絵本 act2 vol.1 式の計算
福田の数学〜京都大学2023年理系第6問〜チェビシェフの多項式と論証(PART2)
単元:
#式の計算(単項式・多項式・式の四則計算)#数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#その他#推理と論証#推理と論証#京都大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{6}$ pを3以上の素数とする。また、θを実数とする。
(1)$\cos3\theta$と$\cos4\theta$を$\cos\theta$の式として表せ。
(2)$\cos\theta$=$\frac{1}{p}$のとき、θ=$\frac{m}{n}$・$\pi$となるような正の整数m,nが存在するか否かを理由をつけて判定せよ。
チェビシェフの多項式
$\cos n\theta$=$T_n$($\cos\theta$)を満たすn次の多項式$T_n(x)$が存在し、その係数はすべて整数であり、最高次の係数が$2^{n-1}$である。
これが、すべての自然数nについて成り立つことを数学的帰納法で証明せよ。
2023京都大学理系過去問
この動画を見る
$\Large\boxed{6}$ pを3以上の素数とする。また、θを実数とする。
(1)$\cos3\theta$と$\cos4\theta$を$\cos\theta$の式として表せ。
(2)$\cos\theta$=$\frac{1}{p}$のとき、θ=$\frac{m}{n}$・$\pi$となるような正の整数m,nが存在するか否かを理由をつけて判定せよ。
チェビシェフの多項式
$\cos n\theta$=$T_n$($\cos\theta$)を満たすn次の多項式$T_n(x)$が存在し、その係数はすべて整数であり、最高次の係数が$2^{n-1}$である。
これが、すべての自然数nについて成り立つことを数学的帰納法で証明せよ。
2023京都大学理系過去問
福田の数学〜京都大学2023年理系第6問〜チェビシェフの多項式と論証(PART1)
単元:
#式の計算(単項式・多項式・式の四則計算)#数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#その他#推理と論証#推理と論証#京都大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{6}$ pを3以上の素数とする。また、θを実数とする。
(1)$\cos3\theta$と$\cos4\theta$を$\cos\theta$の式として表せ。
(2)$\cos\theta$=$\frac{1}{p}$のとき、θ=$\frac{m}{n}$・$\pi$となるような正の整数m,nが存在するか否かを理由をつけて判定せよ。
チェビシェフの多項式
$\cos n\theta$=$T_n$($\cos\theta$)を満たすn次の多項式$T_n(x)$が存在し、その係数はすべて整数であり、最高次の係数が$2^{n-1}$である。
これが、すべての自然数nについて成り立つことを数学的帰納法で証明せよ。
2023京都大学理系過去問
この動画を見る
$\Large\boxed{6}$ pを3以上の素数とする。また、θを実数とする。
(1)$\cos3\theta$と$\cos4\theta$を$\cos\theta$の式として表せ。
(2)$\cos\theta$=$\frac{1}{p}$のとき、θ=$\frac{m}{n}$・$\pi$となるような正の整数m,nが存在するか否かを理由をつけて判定せよ。
チェビシェフの多項式
$\cos n\theta$=$T_n$($\cos\theta$)を満たすn次の多項式$T_n(x)$が存在し、その係数はすべて整数であり、最高次の係数が$2^{n-1}$である。
これが、すべての自然数nについて成り立つことを数学的帰納法で証明せよ。
2023京都大学理系過去問
筆算なしで!
単元:
#数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師:
数学を数楽に
問題文全文(内容文):
$1428 \times 1572 - 428 \times 572$ =
この動画を見る
$1428 \times 1572 - 428 \times 572$ =
式の値 ラ・サール 2023
単元:
#数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
\begin{eqnarray}
\left\{
\begin{array}{l}
x = \sqrt 7 + \sqrt 2 \\
y = \sqrt 7 - \sqrt 2
\end{array}
\right.
\end{eqnarray}
$x^4 - 6x^2y^2 +y^4 = ?$
2023ラ・サール学園
この動画を見る
\begin{eqnarray}
\left\{
\begin{array}{l}
x = \sqrt 7 + \sqrt 2 \\
y = \sqrt 7 - \sqrt 2
\end{array}
\right.
\end{eqnarray}
$x^4 - 6x^2y^2 +y^4 = ?$
2023ラ・サール学園
2023高校入試解説33問目 最初の一問目の計算 中大杉並
単元:
#数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
$2021 \times 2020 - 2020 \times 2019 + 2021 \times 2022 -2022 \times 2023$
2023中央大学杉並高等学校
この動画を見る
$2021 \times 2020 - 2020 \times 2019 + 2021 \times 2022 -2022 \times 2023$
2023中央大学杉並高等学校
慣れれば暗算!!
2023灘中最初の一問
単元:
#算数(中学受験)#数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#過去問解説(学校別)
指導講師:
数学を数楽に
問題文全文(内容文):
$2023 \times (\frac{1}{14} - \frac{1}{15}) \times \frac{1}{17} \times \frac{1}{17}
= 1 \div (81 -?)$
2023灘中学校
この動画を見る
$2023 \times (\frac{1}{14} - \frac{1}{15}) \times \frac{1}{17} \times \frac{1}{17}
= 1 \div (81 -?)$
2023灘中学校
2023灘中最初の一問 計算
単元:
#算数(中学受験)#数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#過去問解説(学校別)
指導講師:
数学を数楽に
問題文全文(内容文):
$2023 \times (\frac{1}{14} - \frac{1}{15}) \times \frac{1}{17} \times \frac{1}{17}$
= $1 \div (81-?)$
2023灘中学校
この動画を見る
$2023 \times (\frac{1}{14} - \frac{1}{15}) \times \frac{1}{17} \times \frac{1}{17}$
= $1 \div (81-?)$
2023灘中学校
2023高校入試解説2問目 文字でおけ! 早稲田佐賀
単元:
#数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
$2023 \times 108 -2022 \times 110 +4046 -54$
2023早稲田佐賀高等学校
この動画を見る
$2023 \times 108 -2022 \times 110 +4046 -54$
2023早稲田佐賀高等学校
中学入試 計算 中大附属中学
単元:
#算数(中学受験)#数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#過去問解説(学校別)
指導講師:
数学を数楽に
問題文全文(内容文):
$(37037 \times 84 - 30030 \times 81 -7007 \times 81) \times 9$
中央大学附属中学校
この動画を見る
$(37037 \times 84 - 30030 \times 81 -7007 \times 81) \times 9$
中央大学附属中学校
気付けば一瞬!!式の値
単元:
#数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師:
数学を数楽に
問題文全文(内容文):
$\frac{a}{b} + \frac{b}{a} = 2$のとき
$a-b=?$
この動画を見る
$\frac{a}{b} + \frac{b}{a} = 2$のとき
$a-b=?$
【中学数学】中学数学:数学検定3級2次:問題1・2
単元:
#数学(中学生)#中1数学#中2数学#式の計算(単項式・多項式・式の四則計算)#数学検定・数学甲子園・数学オリンピック等#空間図形#文字と式#数学検定#数学検定3級
指導講師:
理数個別チャンネル
問題文全文(内容文):
問題1.右の図は、縦の長さがa ㎝、横の長さがb ㎝の長方形と、1辺の長さがc ㎝の正方形です。次の問いに答えなさい。
(1) 長方形の周の長さを、a、b を用いて表しなさい。
(2) 長方形の面積の2倍と正方形の面積を合わせた面積は150 ㎝²未満です。この数量の関係を表した式はどれですか。
下の①~⑥の中から1つ選びなさい。
① 2ab + c² > 150 ② 2ab + c² ≧ 150 ③ 2ab + c² < 150
④ 2ab + c² ≦ 150 ⑤ a²b²+ c² < 150 ⑥ a²b²+ c² ≦ 150
問題2.底面が1辺8㎝の正方形で、高さが6㎝の2つの正四角錐があります。右の図の八面体ABCDEFは、この2つの正四角錐を
ぴったり合わせたものです。次の問いに答えなさい。
(3) 辺CDとねじれの位置にある辺はどれですか。すべて答えなさい。
(4) この八面体の体積は何㎝³ですか。単位をつけて答えなさい。
この動画を見る
問題1.右の図は、縦の長さがa ㎝、横の長さがb ㎝の長方形と、1辺の長さがc ㎝の正方形です。次の問いに答えなさい。
(1) 長方形の周の長さを、a、b を用いて表しなさい。
(2) 長方形の面積の2倍と正方形の面積を合わせた面積は150 ㎝²未満です。この数量の関係を表した式はどれですか。
下の①~⑥の中から1つ選びなさい。
① 2ab + c² > 150 ② 2ab + c² ≧ 150 ③ 2ab + c² < 150
④ 2ab + c² ≦ 150 ⑤ a²b²+ c² < 150 ⑥ a²b²+ c² ≦ 150
問題2.底面が1辺8㎝の正方形で、高さが6㎝の2つの正四角錐があります。右の図の八面体ABCDEFは、この2つの正四角錐を
ぴったり合わせたものです。次の問いに答えなさい。
(3) 辺CDとねじれの位置にある辺はどれですか。すべて答えなさい。
(4) この八面体の体積は何㎝³ですか。単位をつけて答えなさい。
中学生向け整数問題その3
単元:
#中2数学#式の計算(単項式・多項式・式の四則計算)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ 自然数A,Bの最大公約数が6で最小公倍数は432である.(A,B)をすべて求めよ.$
この動画を見る
$ 自然数A,Bの最大公約数が6で最小公倍数は432である.(A,B)をすべて求めよ.$
帯分数登場!!
単元:
#数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師:
数学を数楽に
問題文全文(内容文):
$999 \frac{998}{999} \times 999 = ?$
この動画を見る
$999 \frac{998}{999} \times 999 = ?$
小数の計算 智弁和歌山中
単元:
#算数(中学受験)#数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#過去問解説(学校別)
指導講師:
数学を数楽に
問題文全文(内容文):
$0.125+0.375 \times 0.625-0.875 \div 3.5$
智弁和歌山中学校
この動画を見る
$0.125+0.375 \times 0.625-0.875 \div 3.5$
智弁和歌山中学校