中2数学「連立方程式(代入法)」【毎日配信】 - 質問解決D.B.(データベース)

中2数学「連立方程式(代入法)」【毎日配信】

問題文全文(内容文):
中2~連立方程式(代入法)~

例題次の連立方程式を解きなさい

(1)
$\begin{eqnarray}
\left\{
\begin{array}{l}
5x-2y=5 \\
y=2x-1
\end{array}
\right.
\end{eqnarray}$

(2)
$\begin{eqnarray}
\left\{
\begin{array}{l}
x=2y-9 \\
-x+y=6
\end{array}
\right.
\end{eqnarray}$

(3)
$\begin{eqnarray}
\left\{
\begin{array}{l}
-4x+3y=14 \\
3y=-2x+2
\end{array}
\right.
\end{eqnarray}$
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中2~連立方程式(代入法)~

例題次の連立方程式を解きなさい

(1)
$\begin{eqnarray}
\left\{
\begin{array}{l}
5x-2y=5 \\
y=2x-1
\end{array}
\right.
\end{eqnarray}$

(2)
$\begin{eqnarray}
\left\{
\begin{array}{l}
x=2y-9 \\
-x+y=6
\end{array}
\right.
\end{eqnarray}$

(3)
$\begin{eqnarray}
\left\{
\begin{array}{l}
-4x+3y=14 \\
3y=-2x+2
\end{array}
\right.
\end{eqnarray}$
投稿日:2022.04.16

<関連動画>

【数学】中2-25 連立方程式の利用⑥ 数編

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①2つの数の和は$80$で、
一方の数は他方の数の$4倍$より
$5$小さい。$2$つの数はいくつ?

②ある$2$けたの自然数がある。
十の位の数は一の位の数の$2$倍より
$2$小さく、十の位の数と一の位の数を
入れかえてできる数は、もとの数より$27$小さくなる。
もとの自然数はいくつ?
この動画を見る 

気付けば爽快!!ルートの入った連立方程式

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 数学を数楽に
問題文全文(内容文):
\begin{eqnarray}
\left\{
\begin{array}{l}
x - y = 51 \\
\sqrt x + \sqrt y = 17

\end{array}
\right.
\end{eqnarray}
この動画を見る 

【普通の解き方?それじゃあ…!】連立方程式:法政大学高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
連立方程式$\begin{eqnarray}
\left\{
\begin{array}{l}
ax+y=2 \\
8x-3y=a
\end{array}
\right.
\end{eqnarray}$
の解が$x=2,y=b$であるとき,$a$と$b$の値を求めなさい.

法政大高校過去問
この動画を見る 

問題の背景まで気付いて一流 愛工大名電

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
△ABC:△ACH:△CBH=?
*図は動画内参照

愛知工業大学名電高等学校(改)
この動画を見る 

【数学】中2-18 ややこしい連立方程式①

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の連立方程式を求めよう.

①$\begin{eqnarray}
\left\{
\begin{array}{l}
3(x+y)=4x-7 \\
2x=3y+8
\end{array}
\right.
\end{eqnarray}$

②$\begin{eqnarray}
\left\{
\begin{array}{l}
0.5x-0.2y=2 \\
2x-3y=-3
\end{array}
\right.
\end{eqnarray}$

③$\begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{x}{3}+\dfrac{y}{4}=-1 \\
3y=-5x-9
\end{array}
\right.
\end{eqnarray}$

④$\begin{eqnarray}
\left\{
\begin{array}{l}
2(3x+y)=8x+y+9 \\
5x-4y+30=0
\end{array}
\right.
\end{eqnarray}$
この動画を見る 
PAGE TOP