福田の数学〜早稲田大学2022年人間科学部第7問〜複素数平面上の点の軌跡 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2022年人間科学部第7問〜複素数平面上の点の軌跡

問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{7}}\ iを虚数単位とする。\alpha=-1+iとし、zは次の条件をともに満たす複素数とする。\\
条件1.\hspace{10pt}\frac{z-\alpha}{z-\bar{\alpha}}の実部は0である。\\
条件2.\hspace{10pt}zの虚部は0以上である。\\
このとき、複素数平面上でzがとりうる値全体の集合を表す図形Cと、実軸で\\
\\
囲まれる部分の面積は\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\piである。\\
\\
また、w=\frac{iz}{z+1}で表される点wがとりうる値全体の集合を表す図形と、\\
図形Cで囲まれる部分の面積は\frac{\boxed{\ \ ウ\ \ }\ \pi+\boxed{\ \ エ\ \ }}{\boxed{\ \ オ\ \ }}である。
\end{eqnarray}

2022早稲田大学人間科学部過去問
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#円と方程式#軌跡と領域#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{7}}\ iを虚数単位とする。\alpha=-1+iとし、zは次の条件をともに満たす複素数とする。\\
条件1.\hspace{10pt}\frac{z-\alpha}{z-\bar{\alpha}}の実部は0である。\\
条件2.\hspace{10pt}zの虚部は0以上である。\\
このとき、複素数平面上でzがとりうる値全体の集合を表す図形Cと、実軸で\\
\\
囲まれる部分の面積は\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\piである。\\
\\
また、w=\frac{iz}{z+1}で表される点wがとりうる値全体の集合を表す図形と、\\
図形Cで囲まれる部分の面積は\frac{\boxed{\ \ ウ\ \ }\ \pi+\boxed{\ \ エ\ \ }}{\boxed{\ \ オ\ \ }}である。
\end{eqnarray}

2022早稲田大学人間科学部過去問
投稿日:2022.08.07

<関連動画>

千葉大 整式

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b,c,d$は自然数
$a \neq b,c \neq d$
自然数$p,q$が存在することを示せ

出典:2004年千葉大学 過去問
この動画を見る 

福田の数学〜大阪大学2022年理系第1問〜複素数平面上の点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
rを正の実数とする。
複素数平面上で点Zが点3/2を中心とする半径rの円周上を動くとき、
Z+w=Zw
を満たす点wが描く図形を求めよ。

2022大阪大学理系過去問
この動画を見る 

学習院 複素数 絶対値の最大最小 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
学習院大学過去問題
複素数Z $(Z \neq 0)$
$ω=Z+\frac{1}{Z}+5$
|Z|=2
|ω|の最大値と最小値
この動画を見る 

山形大 ナイスな問題

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#山形大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \alpha=\cos36°+i\sin36°$とする.

(1)$(x-1)(x-\alpha)(x-\alpha^2)・・・・・・(x-\alpha^9)$を計算せよ.
(2)$(x-1)(x-\alpha^2)(x-\alpha^4)(x-\alpha^6)(x-\alpha^8)$を計算せよ.
(3)$(x-\alpha)(x-\alpha^3)(x-\alpha^7)(x-\alpha^9)$を計算せよ.
(4)(3)を用いて\alpha+\dfrac{1}{\alpha}を計算せよ.

山形大過去問
この動画を見る 

福田の数学〜明治大学2021年理工学部第1問(3)〜複素数平面と図形

アイキャッチ画像
単元: #数A#図形の性質#複素数平面#複素数平面#数学(高校生)#大学入試解答速報#数学#明治大学#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (3)\ 複素数zと正の実数rは、等式\\
z^4=r(\cos\frac{2}{3}\pi+i\sin\frac{2}{3}\pi)  \ldots(*)\\
を満たしている。ただし、iは虚数単位である。\\
(\textrm{i})zの偏角\thetaを0 \leqq \theta \lt 2\pi の範囲にとるとき、\thetaのとりうる値の\\
うち最小のものは\frac{\boxed{\ \ チ\ \ }}{\boxed{\ \ ツ\ \ }}\pi\ であり、最大のものは\frac{\boxed{\ \ テ\ \ }}{\boxed{\ \ ト\ \ }}\pi\ である。\\
(\textrm{ii})等式(*)と等式\\
\\
|z-i|=1\\
\\
が共に成り立つとき、rの値はr=\boxed{\ \ ナ\ \ }\ またはr=\boxed{\ \ ニ\ \ }\ である。
\end{eqnarray}

2021明治大学理工学部過去問
この動画を見る 
PAGE TOP