複素数平面 - 質問解決D.B.(データベース)

複素数平面

【数C】【複素数平面】複素数と図形8 ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#図形への応用#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
複素数平面上の2点$\rm A,B$を表す複素数をそれぞれ$\alpha=1-2i,\beta=3+2i$とするとき
線分$\rm AB$を1辺とする正三角形の他の頂点$\rm C$を表す複素数$\gamma$を求めよ。
この動画を見る 

【数C】【複素数平面】複素数と図形7 ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#図形への応用#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
原点を${\rm {O}}, \alpha=2-i,\beta=3+(2a-1)i$を表す点をそれぞれ$\rm A,B$とするとき、$\rm \angle AOB=\dfrac\pi4$を満たす実数$a$の値を求めよ。
この動画を見る 

【数C】【複素数平面】複素数と図形6 ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#図形への応用#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
複素数平面上の異なる4点$\rm A(\alpha),B(\beta),C(\gamma),D(\delta)$
について次のことが成り立つことを証明せよ。

2直線$\rm AB,CD$が垂直に交わる ⇔ $\dfrac{(\delta-\gamma)}{(\beta-\alpha)}$が純虚数
この動画を見る 

【数C】【複素数平面】複素数と図形5 ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#図形への応用#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
点$z$が、点$-1$を通り実軸に垂直な直線上を動くとき、
点$w=\dfrac1z$ はどのような図形を描くか。
この動画を見る 

【数C】【複素数平面】複素数と図形4 ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
点$z$が、原点$\rm O$を中心とする半径1の円から$-1$を除いた図形上を動くとき、
点$w=\dfrac {(z+i)}{(z+1)}$はどのような図形を描くか。
この動画を見る 

【数C】【複素数平面】複素数と図形3 ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#図形への応用#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
点$z$が、原点$\rm O$を中心とする半径1の円上を動くとき、次の点$w$はどのような図形を描くか。
(1) $w=\dfrac{1+i}{z}$ (2) $w=\dfrac{6z-1}{2z-1}$
この動画を見る 

【数C】【複素数平面】複素数と図形2 ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#図形への応用#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の方程式を満たす点$z$全体の集合はどのような図形か。
(1) $z+\bar{z}=2$ (2) $z-\bar{z}=2i$
この動画を見る 

【数C】【複素数平面】複素数と図形1 ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#図形への応用#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角形の各辺の中点が$\alpha=-1+i,\beta=1+2i,\gamma=2$であるとき、この三角形の3つの頂点を表す複素数を求めよ。
この動画を見る 

【数C】【複素数平面】高次方程式3 ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
方程式$z^6+z^3+1=0$の解を求めよ。ただし、解は 極形式のままでよい。
この動画を見る 

【数C】【複素数平面】高次方程式2 ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
複素数$z$が、$z+\dfrac 1z=2\cos\theta$を満たすとき、次の問いに答えよ。
(1)$z$を$\theta$を用いて表せ。
(2)$n$が自然数のとき、等式、$z^n+\dfrac{1}{z^n}=2\cos n\theta$が成り立つことを示せ。
この動画を見る 

【数C】【複素数平面】高次方程式1 ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
$n$を自然数とし、$\displaystyle \alpha = \cos \frac{\pi}{n}+i\sin \frac{\pi}{n}$とする。次の問いに答えよ。
(1) $1+ \alpha +\alpha^2 + \cdots\cdots +\alpha^{2n-1}$の値を求めよ。
(2) $z^{2n}=1$の解は$1, \alpha, \alpha^2, \cdots\cdots, \alpha^{2n-1}$であることを示せ。
この動画を見る 

【数C】【複素数平面】ド・モアブルの定理2 ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
$n$が、$ \displaystyle a_n=(\frac{\sqrt{3}+1}{2} +\frac{\sqrt{3}-1}{2})^{2n}$ が実数となる最小の自然数であるとき、$a_n$の値を求めよ。
この動画を見る 

【数C】【複素数平面】ド・モアブルの定理1 ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
$n$が自然数のとき、$\displaystyle (\frac{1+i}{\sqrt{2}})^n-(\frac{1-i}{\sqrt{2}})^n$ の値を求めよ。
この動画を見る 

【数C】【複素数平面】複素数平面の対称移動 ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
複素数平面上で$\mathrm{O}(0)、\mathrm{A}(-1+\sqrt{3}i)$とする。点$z$を直線$\mathrm{OA}$に関して対称移動した点を$w$とするとき、$w$を$z$を用いて表せ。
この動画を見る 

【数C】【複素数平面】複素数平面の回転 ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
座標平面上の点 $\mathrm{P}(x,y)$ を原点を中心として $\theta$ だけ回転した点を $\mathrm{Q}$ とするとき、 $\mathrm{Q}$ の座標を求めよ。
この動画を見る 

【数C】【複素数平面】複素数の回転と三角形 ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#複素数平面
指導講師: 理数個別チャンネル
問題文全文(内容文):
複素数平面上の3点O(0),A(2-i),Bについて、次の条件を満たしているとき、
点Bを表す複素数を求めよ。
(1)△OABが正三角形となる。(2)△OABがBを直角の頂点とする二等辺三角形になる。
この動画を見る 

【数C】【複素数平面】 極形式から三角比の値を求める ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#複素数平面
指導講師: 理数個別チャンネル
問題文全文(内容文):
$1+i$、$\sqrt{3}+i$を極形式で表すことにより、$cos \displaystyle \frac{5π}{12}$と$sin \displaystyle \frac{5π}{12}$の値を求めよ。
この動画を見る 

【数C】【複素数平面】 極形式で表す ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#複素数平面
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の複素数を 極形式で表せ。ただし、偏角θは0≦θ<2πとする。

(1)$\displaystyle \frac{4+3i}{1+7i}$

(2)$\sqrt{3}+\displaystyle \frac{1-i}{1+i}$

(3)$ー4(\cos \displaystyle \frac{π}{6} + i\sin \displaystyle \frac{π}{6})$

(4)$cos\displaystyle \frac{2π}{3}ーisin \displaystyle \frac{2π}{3}$

(5)$2(sin \displaystyle \frac{π}{3} + i cos \displaystyle \frac{π}{3})$
この動画を見る 

【数C】【複素数平面】複素数の大きさ・対称式の利用 ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\alpha,\beta$は複素数とする。$|\alpha|=|\beta|=1,\alpha+\beta+1=0$のとき、$\alpha^2+\beta^2$の値を求めよ。
この動画を見る 

【数C】【複素数平面】複素数の大きさと式変形 ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
$|z|=3$かつ$|z-2|=4$を満たす複素数$z$について、次の値を求めよ。
(1)$z\bar{z}$ (2) $z+\bar{z}$
この動画を見る 

【数C】【複素数平面】複素数の大きさ ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#複素数平面
指導講師: 理数個別チャンネル
問題文全文(内容文):
$z=2-i$のとき、$|z+\displaystyle \frac{1}{z}|^2$の値を求めよ。
この動画を見る 

【数C】【複素数平面】実数であることの証明 ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#複素数平面
指導講師: 理数個別チャンネル
問題文全文(内容文):
α、βを複素数とし、α≠0とするとき、次のことを証明せよ。
αβが実数 ⇔ β=kαとなる実数kがある
この動画を見る 

【数C】【複素数平面】基本公式と式変形 ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#複素数平面
指導講師: 理数個別チャンネル
問題文全文(内容文):
複素数$z$が$3z+\bar{z}=2-2i$を満たすとき、以下の問いに答えよ。

(1)$3\bar{z}+z$を求めよ。

(2)$z$を求めよ。
この動画を見る 

福田の数学〜名古屋大学2024年理系第2問〜3次方程式の共通解と複素数平面

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ $c$を1より大きい実数とする。また、$i$を虚数単位として、$\alpha$=$\displaystyle\frac{1-i}{\sqrt 2}$ とおく。
複素数$z$に対して、
$P(z)$=$z^3$-$3z^2$+$(c+2)z$-$c$, $Q(z)$=$-\alpha^7z^3$+$3\alpha^6z^2$+$(c+2)\alpha z$-$c$
と定める。
(1)方程式$P(z)$=0を満たす複素数$z$をすべて求め、それらを複素数平面上に図示せよ。
(2)方程式$Q(z)$=0を満たす複素数$z$のうち実部が最大のものを求めよ。
(3)複素数$z$についての2つの方程式$P(z)$=0, $Q(z)$=0が共通解$\beta$を持つとする。そのときの$c$の値と$\beta$を求めよ。
この動画を見る 

頭の体操に 四天王寺

アイキャッチ画像
単元: #複素数平面#図形への応用#数学(高校生)#数C
指導講師: 数学を数楽に
問題文全文(内容文):
$S-T=3\,\rm{cm}^2$
$AP=?$
*図は動画内参照

四天王寺高等学校
この動画を見る 

東京女子医大 二次方程式

アイキャッチ画像
単元: #複素数平面#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z^2=4i$を解け.
東京女子医大過去問
この動画を見る 

福田の数学〜東京工業大学2024年理系第5問〜2次方程式の解が1のn乗根である条件

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 整数の組($a$,$b$)に対して2次式$f(x)$=$x^2$+$ax$+$b$ を考える。方程式$f(x)$=0 の複素数の範囲のすべての解$\alpha$に対して$\alpha^n$=1 となる正の整数$n$が存在するような組($a$,$b$)をすべて求めよ。
この動画を見る 

札幌医科大 2024 複素数の方程式

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
x>0,y≠0
z=x+yi
$z^3=\overline{z}^2$のときxを求めよ

2024札幌医科大過去問
この動画を見る 

【数ⅢC】複素数平面の基本⑦内分点、外分点、重心を考える

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
$A(-3+2i),B(4-8i)$のとき線分ABの中点、3:1に内分、外分する点を表す複素数を求めよ
$\alpha=0,\beta=2+3i,γ=1+6i$の3点で表される三角形の重心を表す複素数を求めよ
この動画を見る 

福田の数学〜東京大学2018年理系第5問〜複素数平面上の点の軌跡

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
複素数平面上の原点を中心とする半径 1 の円を C とする。
点 P(z) は C 上にあり、点 A(I) とは異なるとする。
点 P における円 C の接線に関して、点 A と対称な点を Q(u) とする。
$\omega=\displaystyle \frac{1}{1-u}$とおき$\omega$と共役な複素数を$\overline{ \omega }$で表す。

(1)uと$\displaystyle \frac{\overline{ \omega }}{\omega}$をzについての整数として表し、絶対値の値$\displaystyle \frac{\vert \omega+\overline{ \omega }-1 \vert}{\vert \omega \vert}$を求めよ。
(2)Cのうち実部が$\frac{1}{2}$以下の複素数平面で表される部分をCとする。点P(z)がC’上を動くときの点R($\omega$)の軌跡を求めよ。
  $\omega=x+yi$(x,yは実数)とおく。

2018東大理系過去問
この動画を見る 
PAGE TOP