福田の数学〜早稲田大学2022年理工学部第1問〜2つの指数関数に囲まれた部分の面積と回転体の体積 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2022年理工学部第1問〜2つの指数関数に囲まれた部分の面積と回転体の体積

問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ f(x)=3e^x-6,\hspace{5pt}g(x)=e^{2x}-4e^xとおく。\hspace{90pt}\\
xy平面上の曲線y=f(x)をC、曲線y=g(x)をDとする。\hspace{38pt}\\
以下の問いに答えよ。\hspace{185pt}\\
(1)CとDの概形を一つのxy平面上に描け。\hspace{98pt}\\
(2)CとDによって囲まれた部分の面積Sを求めよ。\hspace{67pt}\\
(3)CとDによって囲まれた部分を、x軸の周りに1回転させてできる\hspace{1pt}\\
立体の体積Vを求めよ。\hspace{165pt}
\end{eqnarray}

2022早稲田大学理工学部過去問
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ f(x)=3e^x-6,\hspace{5pt}g(x)=e^{2x}-4e^xとおく。\hspace{90pt}\\
xy平面上の曲線y=f(x)をC、曲線y=g(x)をDとする。\hspace{38pt}\\
以下の問いに答えよ。\hspace{185pt}\\
(1)CとDの概形を一つのxy平面上に描け。\hspace{98pt}\\
(2)CとDによって囲まれた部分の面積Sを求めよ。\hspace{67pt}\\
(3)CとDによって囲まれた部分を、x軸の周りに1回転させてできる\hspace{1pt}\\
立体の体積Vを求めよ。\hspace{165pt}
\end{eqnarray}

2022早稲田大学理工学部過去問
投稿日:2022.07.25

<関連動画>

#福岡大学#不定積分#ますただ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#福岡大学
指導講師: ますただ
問題文全文(内容文):
以下の不定積分を解け
$\displaystyle \int \displaystyle \frac{x}{\sqrt{ 2x+1 }}$ $dx$

出典:福岡大学
この動画を見る 

【数Ⅲ-164】定積分と不等式の証明

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(定積分と不等式の証明)

①$0≦x≦1$のとき、$1-x^2≦1-x^4≦1$が成り立つことを示せ。
②不等式$\frac{\pi}{4} \lt \int_0^1\sqrt{1-x^4}dx \lt 1$を示せ。
この動画を見る 

#高専数学_12#定積分#元高専教員

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{1}{3x^2+1} dx$
この動画を見る 

【高校数学】滋賀医科大学2023年の積分の問題をその場で解説しながら解いてみた!毎日積分80日目~47都道府県制覇への道~【㉓滋賀】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#滋賀医科大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【滋賀医科大学 2023】
実数全体を定義域とする微分可能な関数$f(x)$は、常に$f(x)>0$であり、等式
$\displaystyle f(x)=1+\int_0^x e^t(1+t)f(t)dt$
を満たしている。
(1) $f(0)$を求めよ。
(2) $logf(x)$の導関数$(logf(x))’$を求めよ。
(3) 関数$f(x)$を求めよ。
(4) 方程式$f(x)=\frac{1}{\sqrt{2}}$を解け。
この動画を見る 

#高専数学#不定積分_12#元高専教員

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#不定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int fan^{-1}x$ $dx$
この動画を見る 
PAGE TOP