積分とその応用

【数Ⅲ】【積分とその応用】シュワルツの不等式{∫[a→b]f(x)g(x)dx}²≦(∫[a→b]{f(x)}²dx)(∫[a→b]{g(x)}²dx) を利用して、次の不等式が成り立つことを証明せよ

単元:
#積分とその応用#定積分#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
シュワルツの不等式
\[
\left\{ \int_a^b f(x)g(x) \, dx \right\}^2 \leq
\left( \int_a^b \{ f(x) \}^2 dx \right)
\left( \int_a^b \{ g(x) \}^2 dx \right) \quad (a < b)
\]
を利用して、\( 0 < a < b, \, h(x) > 0 \) のとき、次の不等式が成り立つことを証明せよ。
(1)
\[
(b - a)^2 < \int_a^b x^2 \, dx \int_a^b \frac{dx}{x^2}
\]
(2)
\[
(b - a)^2 \leq \int_a^b h(x) \, dx \int_a^b \frac{dx}{h(x)}
\]
この動画を見る
シュワルツの不等式
\[
\left\{ \int_a^b f(x)g(x) \, dx \right\}^2 \leq
\left( \int_a^b \{ f(x) \}^2 dx \right)
\left( \int_a^b \{ g(x) \}^2 dx \right) \quad (a < b)
\]
を利用して、\( 0 < a < b, \, h(x) > 0 \) のとき、次の不等式が成り立つことを証明せよ。
(1)
\[
(b - a)^2 < \int_a^b x^2 \, dx \int_a^b \frac{dx}{x^2}
\]
(2)
\[
(b - a)^2 \leq \int_a^b h(x) \, dx \int_a^b \frac{dx}{h(x)}
\]
【数Ⅲ】【積分とその応用】次の極限値を求めよ。(1)lim[n→∞]{√(n+1)+√(n+2)+……+√(2n)}/{1+√2+√3+……+√n}他1問

単元:
#積分とその応用#定積分#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の極限値を求めよ。
(1) $\displaystyle \lim_{ n \to 0 }\dfrac{\sqrt{n+1}+\sqrt{n+2}+\sqrt{n+3}+…+\sqrt{2n}}{1+\sqrt{2}+\sqrt{3}+\sqrt{4}+…+\sqrt{n}}$
(2) $\displaystyle \lim_{ n \to 0 }\log{\sqrt[ n ]{ n+1 }}+\log{\sqrt[ n ]{ n+2 }}+\log{\sqrt[ n ]{ n+3 }}+…+\log{\sqrt[ n ]{ 2n }}-\log n$
この動画を見る
次の極限値を求めよ。
(1) $\displaystyle \lim_{ n \to 0 }\dfrac{\sqrt{n+1}+\sqrt{n+2}+\sqrt{n+3}+…+\sqrt{2n}}{1+\sqrt{2}+\sqrt{3}+\sqrt{4}+…+\sqrt{n}}$
(2) $\displaystyle \lim_{ n \to 0 }\log{\sqrt[ n ]{ n+1 }}+\log{\sqrt[ n ]{ n+2 }}+\log{\sqrt[ n ]{ n+3 }}+…+\log{\sqrt[ n ]{ 2n }}-\log n$
【数Ⅲ】【積分とその応用】次の極限値を求めよ。(1) lim[x→0]1/x∫[0→x]1/(1+cost)dt(2) lim[x→0]∫[0→x](1+sint)²/xdt他1問

単元:
#積分とその応用#定積分#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
導関数、定積分の定義を利用して、次の極限値を求めよ。
(1) $\displaystyle \lim_{ x \to 0 }\dfrac{1}{x}\int_0^x \dfrac{1}{1+cost}dt$
(2) $\displaystyle \lim_{ x \to 0 }\int_0^x \dfrac{(1+sint)^2}{x}dt$
(3) $\displaystyle \lim_{ x \to 0 }\int_0^{x^2} \dfrac{cos⁵t}{x}dt$
この動画を見る
導関数、定積分の定義を利用して、次の極限値を求めよ。
(1) $\displaystyle \lim_{ x \to 0 }\dfrac{1}{x}\int_0^x \dfrac{1}{1+cost}dt$
(2) $\displaystyle \lim_{ x \to 0 }\int_0^x \dfrac{(1+sint)^2}{x}dt$
(3) $\displaystyle \lim_{ x \to 0 }\int_0^{x^2} \dfrac{cos⁵t}{x}dt$
【数Ⅲ】【積分とその応用】点Pの座標(x,y)が 3x=t³+6t², 3y=2t³-3t²(1)点Pが座標(27,9)を通るときの速度を求めよ(2)点Pが時刻0からaまでに通過する道のりLを求めよ。

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
点Pの座標(x,y)が、時刻の関数として次のように表されている。
3x=t³+6t², 3y=2t³-3t²
(1)点Pが座標(27,9)を通るときの速度を求めよ。
(2)点Pが時刻0からa(a>0)までに通過する道のりLを求めよ。
この動画を見る
点Pの座標(x,y)が、時刻の関数として次のように表されている。
3x=t³+6t², 3y=2t³-3t²
(1)点Pが座標(27,9)を通るときの速度を求めよ。
(2)点Pが時刻0からa(a>0)までに通過する道のりLを求めよ。
【数Ⅲ】【積分とその応用】t秒後の速度が v=30-10t(m/s)となるように地上から真上に投げ上げられた物体は、何秒後に何mの高さまで上がって落ち始めるか。

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
t秒後の速度が v=30-10t(m/s)となるように地上から真上に投げ上げられた物体は、何秒後に何mの高さまで上がって落ち始めるか。
この動画を見る
t秒後の速度が v=30-10t(m/s)となるように地上から真上に投げ上げられた物体は、何秒後に何mの高さまで上がって落ち始めるか。
【数Ⅲ】【積分とその応用】曲線x=θcosθ、y=θsinθ(0≦θ≦2π)の長さは、曲線y=x²/2(0≦θ≦2π)の長さに等しいことを示せ。

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
曲線x=θcosθ、y=θsinθ(0≦θ≦2π)の長さは、曲線y=x²/2(0≦θ≦2π)の長さに等しいことを示せ。
この動画を見る
曲線x=θcosθ、y=θsinθ(0≦θ≦2π)の長さは、曲線y=x²/2(0≦θ≦2π)の長さに等しいことを示せ。
【数Ⅲ】【積分とその応用】次の曲線の長さLを求めよ。ただし、θは媒介変数a,p,qは定数であり、a>0,0<q<π/2 を満たす。

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の曲線の長さLを求めよ。ただし、θは媒介変数a,p,qは定数であり、a>0,0<q<π/2 を満たす。
(1) x=a(cosθ+θsinθ)、y=a(sinθ-θcosθ) (0≦θ≦p)
(2) y=log(cosx) (0≦θ≦p)
この動画を見る
次の曲線の長さLを求めよ。ただし、θは媒介変数a,p,qは定数であり、a>0,0<q<π/2 を満たす。
(1) x=a(cosθ+θsinθ)、y=a(sinθ-θcosθ) (0≦θ≦p)
(2) y=log(cosx) (0≦θ≦p)
【数Ⅲ】【積分とその応用】半径がaである円Oの直径ABの両端AおよびBから出発して円Oの周上を同じ向きに動く2点P,QがPの速さはQの速さの2倍でAからBまで動くとき、△APQの面積の最大値を求めよ。

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
半径がaである円Oの直径ABの両端AおよびBから出発して円Oの周上を同じ向きにそれぞれ一定の速さで動く2点P,Qがある。Pの速さはQの速さの2倍で、PがAからBまで動くとき、△APQの面積の最大値を求めよ。また,その時の∠BOQの大きさを求めよ。
この動画を見る
半径がaである円Oの直径ABの両端AおよびBから出発して円Oの周上を同じ向きにそれぞれ一定の速さで動く2点P,Qがある。Pの速さはQの速さの2倍で、PがAからBまで動くとき、△APQの面積の最大値を求めよ。また,その時の∠BOQの大きさを求めよ。
【数Ⅲ】【積分とその応用】点Pが原点Oを中心とする半径rの円の周上を等速円運動OPが毎秒π/6ラジアンだけ回転するとき,点Pの速さと加速度の大きさを求めよ。

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
点Pが,原点Oを中心とする半径rの円の周上を,等速円運動。OPが毎秒π/6ラジアンだけ回転するとき,点Pの速さと加速度の大きさを求めよ。ただし,Pは円周上の点(r,0)から出発するものとする。
この動画を見る
点Pが,原点Oを中心とする半径rの円の周上を,等速円運動。OPが毎秒π/6ラジアンだけ回転するとき,点Pの速さと加速度の大きさを求めよ。ただし,Pは円周上の点(r,0)から出発するものとする。
【数Ⅲ】【積分とその応用】半径が10cm深さが20cmの直円錐形容器に毎秒3cm³の割合で静かに水を注ぐとき水の深さが6cmになった瞬間の水面の上昇する速さと水面の面積の増加する速さを求めよ。

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
上面の半径が10cm,深さが20cmの直円錐形の容器が,その軸を鉛直にして固定されている。この容器に毎秒3cm³の割合で静かに水を注ぐとき,水の深さが6cmになった瞬間の,水面の上昇する速さと,水面の面積の増加する速さを求めよ。
この動画を見る
上面の半径が10cm,深さが20cmの直円錐形の容器が,その軸を鉛直にして固定されている。この容器に毎秒3cm³の割合で静かに水を注ぐとき,水の深さが6cmになった瞬間の,水面の上昇する速さと,水面の面積の増加する速さを求めよ。
【数Ⅲ】【積分とその応用】定積分の種々の問題6 ※問題文は概要欄

単元:
#積分とその応用#定積分#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の等式を満たす関数$f(x)$を求めよ。
(1) $\displaystyle f(x)=x+\int_0^2f(t)e^t~dt$
(2) $\displaystyle f(x)=\sin x-\int_0^\frac\pi3\{f(t)-\frac\pi3\}\sin t~dt$
この動画を見る
次の等式を満たす関数$f(x)$を求めよ。
(1) $\displaystyle f(x)=x+\int_0^2f(t)e^t~dt$
(2) $\displaystyle f(x)=\sin x-\int_0^\frac\pi3\{f(t)-\frac\pi3\}\sin t~dt$
【数Ⅲ】【積分とその応用】定積分の種々の問題5 ※問題文は概要欄

単元:
#積分とその応用#定積分#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の関数$f(x)$の最大値、最小値を求めよ。
(1) $\displaystyle f(x)=\int_0^x(1+2\cos t)\sin t~dt~~(0\leqq x\leqq2\pi)$
(2) $\displaystyle f(x)=\int_1^x(2-t)\log t~dt~~(1\leqq x\leqq e)$
この動画を見る
次の関数$f(x)$の最大値、最小値を求めよ。
(1) $\displaystyle f(x)=\int_0^x(1+2\cos t)\sin t~dt~~(0\leqq x\leqq2\pi)$
(2) $\displaystyle f(x)=\int_1^x(2-t)\log t~dt~~(1\leqq x\leqq e)$
【数Ⅲ】【積分とその応用】定積分の種々の問題4 ※問題文は概要欄

単元:
#積分とその応用#定積分#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
関数$\displaystyle f(x)=\int_0^{x}\sin 2t~dt~~(0\leqq x\leqq 2\pi)$
の極値を求めよ。
この動画を見る
関数$\displaystyle f(x)=\int_0^{x}\sin 2t~dt~~(0\leqq x\leqq 2\pi)$
の極値を求めよ。
【数Ⅲ】【積分とその応用】定積分の種々の問題3 ※問題文は概要欄

単元:
#積分とその応用#定積分#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
関数$\displaystyle F(x)=\int_x^{2x^2}(x+t)\sin t~dt$
を$x$について微分せよ。
この動画を見る
関数$\displaystyle F(x)=\int_x^{2x^2}(x+t)\sin t~dt$
を$x$について微分せよ。
【数Ⅲ】【積分とその応用】定積分の種々の問題2 ※問題文は概要欄

単元:
#積分とその応用#定積分#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の関数を$x$について微分せよ。
(1) $\displaystyle y=\int_x^{2x}\cos^2t~dt$
(2) $\displaystyle y=\int_x^{x^2}e^t\sin t~dt$
この動画を見る
次の関数を$x$について微分せよ。
(1) $\displaystyle y=\int_x^{2x}\cos^2t~dt$
(2) $\displaystyle y=\int_x^{x^2}e^t\sin t~dt$
【数Ⅲ】【積分とその応用】定積分の種々の問題1 ※問題文は概要欄

単元:
#積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の関数を$x$について微分せよ。
(1) $\displaystyle F(x)=\int_0^x(x+t)e^t~dt$
(2) $\displaystyle F(x)=\int_1^x(t-x)\log t~dt$
この動画を見る
次の関数を$x$について微分せよ。
(1) $\displaystyle F(x)=\int_0^x(x+t)e^t~dt$
(2) $\displaystyle F(x)=\int_1^x(t-x)\log t~dt$
【数Ⅲ】【積分とその応用】面積13 ※問題文は概要欄

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
$k > 0$とする。曲線$y=\sin2x~~(0\leqq x\leqq \dfrac\pi2)$と$x$軸で囲まれた部分の面積を$y=k\sin x$が2等分するように定数$k$の値を定めよ。
この動画を見る
$k > 0$とする。曲線$y=\sin2x~~(0\leqq x\leqq \dfrac\pi2)$と$x$軸で囲まれた部分の面積を$y=k\sin x$が2等分するように定数$k$の値を定めよ。
【数Ⅲ】【積分とその応用】面積15 ※問題文は概要欄

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
$x$軸に平行な直線と曲線$y=\sin x~~(0\leqq x \leqq 3\pi)$が4点で交わるとき、この直線と曲線で囲まれた3つの部分の面積の和が最小となるような直線の方程式を求めよ。
この動画を見る
$x$軸に平行な直線と曲線$y=\sin x~~(0\leqq x \leqq 3\pi)$が4点で交わるとき、この直線と曲線で囲まれた3つの部分の面積の和が最小となるような直線の方程式を求めよ。
【数Ⅲ】【積分とその応用】面積14 ※問題文は概要欄

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
$1\leqq a\leqq e$とする。曲線$y=e^x-a$と$x$軸、$y$軸および直線$x=1$で囲まれた部分の面積を$S(a)$とする。
(1) $S(a)$を求めよ。
(2) $S(a)$の最小値とそのときの$a$の値を求めよ。
この動画を見る
$1\leqq a\leqq e$とする。曲線$y=e^x-a$と$x$軸、$y$軸および直線$x=1$で囲まれた部分の面積を$S(a)$とする。
(1) $S(a)$を求めよ。
(2) $S(a)$の最小値とそのときの$a$の値を求めよ。
【数Ⅲ】【積分とその応用】面積12 ※問題文は概要欄

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
曲線$\dfrac{\sqrt{x}}a+\dfrac{\sqrt{y}}b=1$は、直線$\dfrac x a+\dfrac y b=1$と$x$軸、$y$軸で囲まれた三角形を一定の面積の比に分割することを示せ。ただし、$a > 0,b > 0$とする。
この動画を見る
曲線$\dfrac{\sqrt{x}}a+\dfrac{\sqrt{y}}b=1$は、直線$\dfrac x a+\dfrac y b=1$と$x$軸、$y$軸で囲まれた三角形を一定の面積の比に分割することを示せ。ただし、$a > 0,b > 0$とする。
【数Ⅲ】【積分とその応用】面積11 ※問題文は概要欄

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
曲線$y=ax^2$と$y=\log x$はただ1点を共有し、その点におけるそれぞれの接線は一致するものとする。
(1)定数$a$の値と共有点の座標を求めよ。
(2)この2つの曲線と$x$軸で囲まれた部分の面積を求めよ。
この動画を見る
曲線$y=ax^2$と$y=\log x$はただ1点を共有し、その点におけるそれぞれの接線は一致するものとする。
(1)定数$a$の値と共有点の座標を求めよ。
(2)この2つの曲線と$x$軸で囲まれた部分の面積を求めよ。
【数Ⅲ】【積分とその応用】面積10 ※問題文は概要欄

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
$x=\cos^4\theta,y=\sin^4\theta~~(0\leqq \theta \leqq \dfrac\pi2)$で表される曲線を$C$とし、曲線$C$の接線を$l$とする。曲線$C$と接線$l$、$x$軸で囲まれた部分の面積と、曲線$C$と接線$l$、$y$軸で囲まれた面積の和が$\frac{1}{24}$であるという。このとき、接線$l$の方程式を求めよ。
この動画を見る
$x=\cos^4\theta,y=\sin^4\theta~~(0\leqq \theta \leqq \dfrac\pi2)$で表される曲線を$C$とし、曲線$C$の接線を$l$とする。曲線$C$と接線$l$、$x$軸で囲まれた部分の面積と、曲線$C$と接線$l$、$y$軸で囲まれた面積の和が$\frac{1}{24}$であるという。このとき、接線$l$の方程式を求めよ。
【数Ⅲ】【積分とその応用】面積8 ※問題文は概要欄

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
曲線$x=\cos^3\theta,y=\sin^3\theta$で囲まれた部分の面積を求めよ。
この動画を見る
曲線$x=\cos^3\theta,y=\sin^3\theta$で囲まれた部分の面積を求めよ。
【数Ⅲ】【積分とその応用】面積7 ※問題文は概要欄

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の曲線と$x$軸で囲まれた部分の面積を求めよ。
(1) $x=1-t^4,y=t-t^3~~(0\leqq t \leqq 1)$
(2) $x=t+\sin t,y=1-\cos t~~(0\leqq \theta \leqq 2\pi)$
この動画を見る
次の曲線と$x$軸で囲まれた部分の面積を求めよ。
(1) $x=1-t^4,y=t-t^3~~(0\leqq t \leqq 1)$
(2) $x=t+\sin t,y=1-\cos t~~(0\leqq \theta \leqq 2\pi)$
【数Ⅲ】【積分とその応用】面積5 ※問題文は概要欄

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
曲線$5x^2+2xy+y^2=16$で囲まれた部分の面積$S$を求めよ。
この動画を見る
曲線$5x^2+2xy+y^2=16$で囲まれた部分の面積$S$を求めよ。
【数Ⅲ】【積分とその応用】面積9 ※問題文は概要欄

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
座標平面上で、原点$\rm O$から曲線$y=\sin x$へ引いた接線の接点を${\rm T}(\alpha,\sin\alpha)$とする。ただし、$\pi < \alpha < \dfrac32\pi$とする。
(1)$\alpha$の満たす方程式を求めよ。
(2)曲線$y=\sin x$と線分$\rm OT$で囲まれた部分の面積$S$を、$\cos\alpha$で表せ。
この動画を見る
座標平面上で、原点$\rm O$から曲線$y=\sin x$へ引いた接線の接点を${\rm T}(\alpha,\sin\alpha)$とする。ただし、$\pi < \alpha < \dfrac32\pi$とする。
(1)$\alpha$の満たす方程式を求めよ。
(2)曲線$y=\sin x$と線分$\rm OT$で囲まれた部分の面積$S$を、$\cos\alpha$で表せ。
【数Ⅲ】【積分とその応用】面積6 ※問題文は概要欄

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
2つの曲線$y=x^2,\sqrt{x}+\sqrt{y}=2$と$y$軸で囲まれた部分の面積$S$を求めよ。
この動画を見る
2つの曲線$y=x^2,\sqrt{x}+\sqrt{y}=2$と$y$軸で囲まれた部分の面積$S$を求めよ。
【数Ⅲ】【積分とその応用】面積4 ※問題文は概要欄

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の曲線と$x$軸で囲まれた部分の面積を求めよ。
$x=\cos\theta$
$y=2\sin\theta~~(0\leqq \theta \leqq \pi)$
この動画を見る
次の曲線と$x$軸で囲まれた部分の面積を求めよ。
$x=\cos\theta$
$y=2\sin\theta~~(0\leqq \theta \leqq \pi)$
【数Ⅲ】【積分とその応用】面積3 ※問題文は概要欄

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の曲線で囲まれた図形の面積を求めよ。
(1) y²=x²(1-x)
(2) |y+1|=x|x-3|
この動画を見る
次の曲線で囲まれた図形の面積を求めよ。
(1) y²=x²(1-x)
(2) |y+1|=x|x-3|
【数Ⅲ】【積分とその応用】面積2 ※問題文は概要欄

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の楕円によって囲まれた図形の面積を求めよ。
(1) 2x²+3y²=6
(2) 3x²+4y²=1
この動画を見る
次の楕円によって囲まれた図形の面積を求めよ。
(1) 2x²+3y²=6
(2) 3x²+4y²=1