問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}}\ (1)ある学校で100点満点のテストを行うことになった。\\
まず10人の教員で解いてみたところ、その得点のヒストグラムは\\
右図(※動画参照)のようになった。ただし、得点は整数値とする。\\
このデータの平均値は\boxed{\ \ ア\ \ }\ 点、中央値は\boxed{\ \ イ\ \ }\ 点、\\
最頻値は\boxed{\ \ ウ\ \ }\ 点、分散は\boxed{\ \ エ\ \ }\ 点である。\\
(2)A組とB組の2つのクラスで数学のテストを行ったところ、A組の得点の平均\\
値が\overline{x}_A、分散がs_A^2、B組の得点の平均値が\overline{x}_B、分散がs_B^2となった。\\
ただし、\overline{x}_A,\overline{x}_B,s_A^2,s_B^2はいずれも0ではなかった。このとき、B組の各生徒\\
の得点xに対して、正の実数aと実数bを用いてy=ax+bと変換し、\\
yの平均値と分散をA組の平均値と分散に一致させるためには、\\
a=\boxed{\ \ オ\ \ }、b=\boxed{\ \ カ\ \ }とすればよい。
\end{eqnarray}
2022慶應義塾大学看護医療学科過去問
\begin{eqnarray}
{\large\boxed{3}}\ (1)ある学校で100点満点のテストを行うことになった。\\
まず10人の教員で解いてみたところ、その得点のヒストグラムは\\
右図(※動画参照)のようになった。ただし、得点は整数値とする。\\
このデータの平均値は\boxed{\ \ ア\ \ }\ 点、中央値は\boxed{\ \ イ\ \ }\ 点、\\
最頻値は\boxed{\ \ ウ\ \ }\ 点、分散は\boxed{\ \ エ\ \ }\ 点である。\\
(2)A組とB組の2つのクラスで数学のテストを行ったところ、A組の得点の平均\\
値が\overline{x}_A、分散がs_A^2、B組の得点の平均値が\overline{x}_B、分散がs_B^2となった。\\
ただし、\overline{x}_A,\overline{x}_B,s_A^2,s_B^2はいずれも0ではなかった。このとき、B組の各生徒\\
の得点xに対して、正の実数aと実数bを用いてy=ax+bと変換し、\\
yの平均値と分散をA組の平均値と分散に一致させるためには、\\
a=\boxed{\ \ オ\ \ }、b=\boxed{\ \ カ\ \ }とすればよい。
\end{eqnarray}
2022慶應義塾大学看護医療学科過去問
単元:
#数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}}\ (1)ある学校で100点満点のテストを行うことになった。\\
まず10人の教員で解いてみたところ、その得点のヒストグラムは\\
右図(※動画参照)のようになった。ただし、得点は整数値とする。\\
このデータの平均値は\boxed{\ \ ア\ \ }\ 点、中央値は\boxed{\ \ イ\ \ }\ 点、\\
最頻値は\boxed{\ \ ウ\ \ }\ 点、分散は\boxed{\ \ エ\ \ }\ 点である。\\
(2)A組とB組の2つのクラスで数学のテストを行ったところ、A組の得点の平均\\
値が\overline{x}_A、分散がs_A^2、B組の得点の平均値が\overline{x}_B、分散がs_B^2となった。\\
ただし、\overline{x}_A,\overline{x}_B,s_A^2,s_B^2はいずれも0ではなかった。このとき、B組の各生徒\\
の得点xに対して、正の実数aと実数bを用いてy=ax+bと変換し、\\
yの平均値と分散をA組の平均値と分散に一致させるためには、\\
a=\boxed{\ \ オ\ \ }、b=\boxed{\ \ カ\ \ }とすればよい。
\end{eqnarray}
2022慶應義塾大学看護医療学科過去問
\begin{eqnarray}
{\large\boxed{3}}\ (1)ある学校で100点満点のテストを行うことになった。\\
まず10人の教員で解いてみたところ、その得点のヒストグラムは\\
右図(※動画参照)のようになった。ただし、得点は整数値とする。\\
このデータの平均値は\boxed{\ \ ア\ \ }\ 点、中央値は\boxed{\ \ イ\ \ }\ 点、\\
最頻値は\boxed{\ \ ウ\ \ }\ 点、分散は\boxed{\ \ エ\ \ }\ 点である。\\
(2)A組とB組の2つのクラスで数学のテストを行ったところ、A組の得点の平均\\
値が\overline{x}_A、分散がs_A^2、B組の得点の平均値が\overline{x}_B、分散がs_B^2となった。\\
ただし、\overline{x}_A,\overline{x}_B,s_A^2,s_B^2はいずれも0ではなかった。このとき、B組の各生徒\\
の得点xに対して、正の実数aと実数bを用いてy=ax+bと変換し、\\
yの平均値と分散をA組の平均値と分散に一致させるためには、\\
a=\boxed{\ \ オ\ \ }、b=\boxed{\ \ カ\ \ }とすればよい。
\end{eqnarray}
2022慶應義塾大学看護医療学科過去問
投稿日:2022.07.22