連立方程式 - 質問解決D.B.(データベース)

連立方程式

問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
(1+x)(1+y)(x+y)=2024 \\
x^3+y^3=1927
\end{array}
\right.
\end{eqnarray}$
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
(1+x)(1+y)(x+y)=2024 \\
x^3+y^3=1927
\end{array}
\right.
\end{eqnarray}$
投稿日:2023.12.10

<関連動画>

たすきがけの因数分解の裏技?

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
因数分解しなさい。
$5x^{ 2 }-11x+2$
この動画を見る 

お茶の水女子大 解答に誤りがあるので、訂正版を出しました。素晴らしい別解をコメントくださった方がいるので公開はしておきます。

アイキャッチ画像
単元: #大学入試過去問(数学)#2次関数#複素数と方程式#2次関数とグラフ#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#数学(高校生)#お茶の水女子大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a \neq 1$
$3(a-1)x^2+6x-a-2=0$は0と1の間に少なくとも1つの解をもつことを示せ

出典:お茶の水女子大学 過去問訂正版
この動画を見る 

福田のわかった数学〜高校1年生第8回〜2次関数の最大最小(1)

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 2次関数の最大最小(1)
次の関数の最大最小を調べよ。
(1) $y=\displaystyle \frac{x^2+6x+6}{x^2+x+1}$ (2)$y=x-\sqrt x$
この動画を見る 

福田の1.5倍速演習〜合格する重要問題054〜大阪大学2017年度文系第1問〜放物線とx軸で囲まれた面積

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ $b,c$を実数、$q$を正の実数とする。放物線$P:y=-x^2+bx+c$の頂点の$y$座標が
$q$のとき、放物線$P$と$x$軸で囲まれた部分の面積$S$を$q$を用いて表せ。

2017大阪大学文系過去問
この動画を見る 

奈良県教員採用試験(数学:式変形)

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$x+y+z=2$ , $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2}$
のとき
$\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}$の値を求めよ。
この動画を見る 
PAGE TOP