問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ (1)\overrightarrow{ a }=(\sqrt3,0,1)とする。空間ベクトル\overrightarrow{ b }, \overrightarrow{ c }はともに大きさが1であり、\\
\overrightarrow{ a }∟\overrightarrow{ b }, \overrightarrow{ b }∟\overrightarrow{ c }, \overrightarrow{ c }∟\overrightarrow{ a } とする。\\
(\textrm{i})p,q,rを実数とし、\overrightarrow{ x }=p\overrightarrow{ a }+q\overrightarrow{ b }+r\overrightarrow{ c } とするとき、\\
内積\overrightarrow{ x }・\overrightarrow{ a }と\overrightarrow{ x }の大きさ|\ \overrightarrow{ x }\ |をp,q,rを用いて表すと、\overrightarrow{ x }・\overrightarrow{ a }=\boxed{\ \ ア\ \ },|\ \overrightarrow{ x } \ |=\boxed{\ \ イ\ \ }である。\\
(\textrm{ii})(5,0,z)=s\overrightarrow{ a }+(\cos\theta)\overrightarrow{ b }+(\sin\theta)\overrightarrow{ c }を満たす実数s,\thetaが存在するような\\
実数zは2個あるが、それらを全て求めるとz=\boxed{\ \ ウ\ \ }である。\\
\end{eqnarray}
2022慶應義塾大学理工学部過去問
\begin{eqnarray}
{\Large\boxed{1}}\ (1)\overrightarrow{ a }=(\sqrt3,0,1)とする。空間ベクトル\overrightarrow{ b }, \overrightarrow{ c }はともに大きさが1であり、\\
\overrightarrow{ a }∟\overrightarrow{ b }, \overrightarrow{ b }∟\overrightarrow{ c }, \overrightarrow{ c }∟\overrightarrow{ a } とする。\\
(\textrm{i})p,q,rを実数とし、\overrightarrow{ x }=p\overrightarrow{ a }+q\overrightarrow{ b }+r\overrightarrow{ c } とするとき、\\
内積\overrightarrow{ x }・\overrightarrow{ a }と\overrightarrow{ x }の大きさ|\ \overrightarrow{ x }\ |をp,q,rを用いて表すと、\overrightarrow{ x }・\overrightarrow{ a }=\boxed{\ \ ア\ \ },|\ \overrightarrow{ x } \ |=\boxed{\ \ イ\ \ }である。\\
(\textrm{ii})(5,0,z)=s\overrightarrow{ a }+(\cos\theta)\overrightarrow{ b }+(\sin\theta)\overrightarrow{ c }を満たす実数s,\thetaが存在するような\\
実数zは2個あるが、それらを全て求めるとz=\boxed{\ \ ウ\ \ }である。\\
\end{eqnarray}
2022慶應義塾大学理工学部過去問
単元:
#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ (1)\overrightarrow{ a }=(\sqrt3,0,1)とする。空間ベクトル\overrightarrow{ b }, \overrightarrow{ c }はともに大きさが1であり、\\
\overrightarrow{ a }∟\overrightarrow{ b }, \overrightarrow{ b }∟\overrightarrow{ c }, \overrightarrow{ c }∟\overrightarrow{ a } とする。\\
(\textrm{i})p,q,rを実数とし、\overrightarrow{ x }=p\overrightarrow{ a }+q\overrightarrow{ b }+r\overrightarrow{ c } とするとき、\\
内積\overrightarrow{ x }・\overrightarrow{ a }と\overrightarrow{ x }の大きさ|\ \overrightarrow{ x }\ |をp,q,rを用いて表すと、\overrightarrow{ x }・\overrightarrow{ a }=\boxed{\ \ ア\ \ },|\ \overrightarrow{ x } \ |=\boxed{\ \ イ\ \ }である。\\
(\textrm{ii})(5,0,z)=s\overrightarrow{ a }+(\cos\theta)\overrightarrow{ b }+(\sin\theta)\overrightarrow{ c }を満たす実数s,\thetaが存在するような\\
実数zは2個あるが、それらを全て求めるとz=\boxed{\ \ ウ\ \ }である。\\
\end{eqnarray}
2022慶應義塾大学理工学部過去問
\begin{eqnarray}
{\Large\boxed{1}}\ (1)\overrightarrow{ a }=(\sqrt3,0,1)とする。空間ベクトル\overrightarrow{ b }, \overrightarrow{ c }はともに大きさが1であり、\\
\overrightarrow{ a }∟\overrightarrow{ b }, \overrightarrow{ b }∟\overrightarrow{ c }, \overrightarrow{ c }∟\overrightarrow{ a } とする。\\
(\textrm{i})p,q,rを実数とし、\overrightarrow{ x }=p\overrightarrow{ a }+q\overrightarrow{ b }+r\overrightarrow{ c } とするとき、\\
内積\overrightarrow{ x }・\overrightarrow{ a }と\overrightarrow{ x }の大きさ|\ \overrightarrow{ x }\ |をp,q,rを用いて表すと、\overrightarrow{ x }・\overrightarrow{ a }=\boxed{\ \ ア\ \ },|\ \overrightarrow{ x } \ |=\boxed{\ \ イ\ \ }である。\\
(\textrm{ii})(5,0,z)=s\overrightarrow{ a }+(\cos\theta)\overrightarrow{ b }+(\sin\theta)\overrightarrow{ c }を満たす実数s,\thetaが存在するような\\
実数zは2個あるが、それらを全て求めるとz=\boxed{\ \ ウ\ \ }である。\\
\end{eqnarray}
2022慶應義塾大学理工学部過去問
投稿日:2022.06.07