福田の数学〜東京医科歯科大学2022年理系第3問〜定積分と面積 - 質問解決D.B.(データベース)

福田の数学〜東京医科歯科大学2022年理系第3問〜定積分と面積

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ 曲線C:y=f(x) (0 \leqq x \lt 1)が次の条件を満たすとする。\\
・f(0)=0\\
・0 \lt x \lt 1のときf'(x) \gt 0\\
・0 \lt a \lt 1を満たすすべての実数aについて、曲線C上の点(a, f(a))\\
における接線と直線x=1との交点をQとするとき、PQ=1\\
この時以下の問いに答えよ。\\
(1)f'(x)を求めよ。\\
(2)\int_0^{\frac{1}{2}}(1-x)f'(x)dxの値を求めよ。\\
(3)曲線Cとx軸、直線x=1、直線y=f(\frac{1}{2})で囲まれた部分の面積を求めよ。\\
\end{eqnarray}

2022東京医科歯科大学理系過去問
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#積分とその応用#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ 曲線C:y=f(x) (0 \leqq x \lt 1)が次の条件を満たすとする。\\
・f(0)=0\\
・0 \lt x \lt 1のときf'(x) \gt 0\\
・0 \lt a \lt 1を満たすすべての実数aについて、曲線C上の点(a, f(a))\\
における接線と直線x=1との交点をQとするとき、PQ=1\\
この時以下の問いに答えよ。\\
(1)f'(x)を求めよ。\\
(2)\int_0^{\frac{1}{2}}(1-x)f'(x)dxの値を求めよ。\\
(3)曲線Cとx軸、直線x=1、直線y=f(\frac{1}{2})で囲まれた部分の面積を求めよ。\\
\end{eqnarray}

2022東京医科歯科大学理系過去問
投稿日:2022.05.24

<関連動画>

福田の数学〜中央大学2021年理工学部第4問〜定積分と不等式、極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#積分とその応用#関数の極限#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{4}$自然数$n$に対し,$f_n(x)=x^{-1+\frac{1}{n}}(x\gt 0)$とおく.
また,正の実数$a_n$は$\displaystyle \int_{1}^{a_n}f_n(x)dx=1$満たすものとする.次の問い 
答えよ.

(1)関数$f_n(x)$の不定積分を求めよ.

(2)$a_n$の値と極限$\displaystyle \lim_{n\to\infty}a_n$を求めよ.また,正の実数$b_n$が$\displaystyle \int_{1}^{b_n}f_{n+1}(x)dx=-1$を満たすとき,$b_n$の値と極限$\displaystyle \lim_{n\to\infty}b_n$を求めよ.

(3)2以上の自然数$k$に対して$\displaystyle \int_{k-1}^{k}f_n(x)dx \gt \dfrac{1}{k}$を示し,これを利用して$a_n\lt 4$を証明せよ.

(4)$\displaystyle \int_{1}^{a_n}f_{n+1}(x)dx\lt 1$を示し,これを利用して$a_n\lt a_{n+1}$を証明せよ.

2021中央大理工学部過去問
この動画を見る 

福田の数学〜九州大学2022年文系第4問〜定義に従って定積分の性質を証明する

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#微分法と積分法#恒等式・等式・不等式の証明#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#九州大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ 定積分について述べた次の文章を読んで、後の問いに答えよ。\\
f(x)を整式とする。F'(x)=f(x)となるF(x)を1つ選び、\\
f(x)のaからbまでの定積分を\\
\int_a^bf(x)dx=F(b)-F(a)         \ldots①\\
で定義する。定積分の値はF(x)の選び方によらずに定まる。\\
定積分は次の性質(A),(B),(C)をもつ。\\
(A)\int_a^b\left\{kf(x)+lg(x)\right\}dx=k\int_a^bf(x)dx+l\int_a^bg(x)dx\\
(B) a \leqq c \leqq bのとき、\int_a^cf(x)dx+\int_c^bf(x)dx=\int_a^bf(x)dx\\
(C)区間a \leqq x \leqq bにおいてg(x) \geqq h(x)ならば、\int_a^bg(x)dx \geqq \int_a^bh(x)dx\\
ただし、f(x),g(x),h(x)は整式、k,lは定数である。\\
以下、f(x)が区間0 \leqq x \leqq 1上で増加関数になる場合を考える。\\
nを自然数とする。定積分の性質\boxed{\ \ ア\ \ }を用い、定数関数に対する定積分の計算を行うと、\\
\frac{1}{n}f(\frac{i-1}{n}) \leqq \int_{\frac{i-1}{n}}^{\frac{i}{n}}f(x)dx \leqq \frac{1}{n}f(\frac{i}{n})  (i = 1,2,\ldots,n)     \ldots②\\
が成り立つことがわかる。S_n=\frac{1}{n}\sum_{i=1}^nf(\frac{i-1}{n})とおくと、\\
不等式②と定積分の性質\boxed{\ \ イ\ \ }より次の不等式が成り立つ。\\
0 \leqq \int_0^1f(x)dx-S_n \leqq \frac{f(1)-f(0)}{n}     \ldots③\\
よって、nを限りなく大きくするとS_nは\int_0^1f(x)dxに限りなく近づく。\\
\\
\\
(1)関数F(x),G(x)が微分可能であるとき、\left\{F(x)+G(x)\right\}'=F'(x)+G'(x)が\\
成り立つことと定積分の定義①を用いて、性質(A)でk=l=1とした場合の等式\\
\int_a^b\left\{f(x)+g(x)\right\}dx=\int_a^bf(x)dx+\int_a^bg(x)dx を示せ。\\
(2)定積分の定義①と関数の増減と導関数の関係を用いて、次を示せ。\\
a \lt bのとき、区間a \leqq x \leqq bにおいてg(x) \gt 0ならば、\int_a^bg(x)dx \gt 0\\
(3)(A),(B),(C)のうち、空欄\boxed{\ \ ア\ \ }に入る記号として最もふさわしいものを\\
1つ選び答えよ。また、文章中の下線部の内容を詳しく説明することで、\\
不等式②を示せ。\\
(4)(A),(B),(C)のうち、空欄\boxed{\ \ イ\ \ }に入る記号として最もふさわしいものを\\
1つ選び答えよ。また、不等式③を示せ。\\
\end{eqnarray}

2022九州大学文系過去問
この動画を見る 

【高校数学】静岡大学2023年の積分の問題をその場で解説しながら解いてみた!毎日積分87日目~47都道府県制覇への道~【㉚静岡】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#静岡大学#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【静岡大学 2023】
関数$f(x)=x^3e^{-x^2}$について、次の問いに答えよ。ただし、$e$は自然対数の底とする。必要ならば$\displaystyle \lim_{x \to \infty}\frac{x^3}{e^{x^2}}=0$を用いてもよい。
(1) 関数$f(x)$の増減を調べ、極値を求めよ。
(2) $a>0$とする。方程式$e^{x^2}-ax^3=0$の実数解の個数を求めよ。
(3) 曲線$y=f(x)$と$x$軸および直線$x=2$で囲まれた図形の面積を求めよ。
この動画を見る 

【高校数学】毎日積分60日目~47都道府県制覇への道~【④熊本】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#熊本大学#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
定積分$\displaystyle \int_1^{\sqrt{t}}4tx(1-tx^2)e^{-tx^2}logxdx$の値を$t$を用いて表せ。
【熊本大学 2023】
この動画を見る 

【高校数学】富山大学2023年の積分の問題をその場で解説しながら解いてみた!毎日積分86日目~47都道府県制覇への道~【㉙富山】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#数学(高校生)#富山大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【富山大学 2023】
(1) $\displaystyle t=tan\frac{x}{2} (-π<x<π)$とおく。
この時、$\displaystyle sinx=\frac{2t}{1+t^2}, cosx=\frac{1-t^2}{1+t^2}, \frac{dx}{dt}=\frac{2}{1+t^2}$であることを示せ。
(2) 定積分$\displaystyle \int_0^{\frac{π}{2}}\frac{dx}{1+sinx+cosx}$を求めよ。
(3) 2つの定積分$\displaystyle \int_0^{\frac{π}{2}}\frac{1+2sinx}{1+sinx+cosx}dx, \int_0^{\frac{π}{2}}\frac{1+2cosx}{1+sinx+cosx}dx$が等しいことを示せ。
(4) 定積分$\displaystyle \int_0^{\frac{π}{2}}\frac{1+2sinx}{1+sinx+cosx}dx$を求めよ。
(5) 定積分$\displaystyle \int_0^{\frac{π}{2}}\frac{sinx}{1+sinx+cosx}dx$を求めよ。
この動画を見る 
PAGE TOP