福田の数学〜千葉大学2022年理系第8問〜定積分で著された式の極限 - 質問解決D.B.(データベース)

福田の数学〜千葉大学2022年理系第8問〜定積分で著された式の極限

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{8}}\ 正の整数m,nに対して、\hspace{120pt}\\
A(m,n)=(m+1)n^{m+1}\int_o^{\frac{1}{n}}x^me^{-x}dx\\
とおく。\\
(1)e^{-\frac{1}{n}} \leqq A(m,n) \leqq 1 を証明せよ。\\
(2)各mに対して、b_m=\lim_{n \to \infty}A(m,n) を求めよ。\\
(3)各nに対して、c_n=\lim_{m \to \infty}A(m,n) を求めよ。
\end{eqnarray}

2022千葉大学理系過去問
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{8}}\ 正の整数m,nに対して、\hspace{120pt}\\
A(m,n)=(m+1)n^{m+1}\int_o^{\frac{1}{n}}x^me^{-x}dx\\
とおく。\\
(1)e^{-\frac{1}{n}} \leqq A(m,n) \leqq 1 を証明せよ。\\
(2)各mに対して、b_m=\lim_{n \to \infty}A(m,n) を求めよ。\\
(3)各nに対して、c_n=\lim_{m \to \infty}A(m,n) を求めよ。
\end{eqnarray}

2022千葉大学理系過去問
投稿日:2022.05.20

<関連動画>

福田の数学〜無限級数の和は部分和の極限〜明治大学2023年全学部統一Ⅲ第1問(1)〜無限級数の和

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
無限級数

$\displaystyle \sum_{n=1}^{\infty} \log \frac{(n+1)(n+2)}{n(n+3)}$

の和を求めよ。

2023明治大学過去問
この動画を見る 

【数Ⅲ】極限:無限総和にひっかかるな!!無限総和は罠がいっぱい

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\dfrac{1}{1}+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...=$
$\dfrac{1}{1}+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...=$
それぞれの無限総和はいくつ??
この動画を見る 

東京電機大 4次関数と直線の共有点

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#関数の極限#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^4-2x^3+x$と$y=k(x-1)$の共有点の個数を求めよ.

東京電機大過去問
この動画を見る 

福田の数学〜上智大学2023年TEAP利用型理系第1問(3)〜連立漸化式と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ (3)$a_1$=0, $b_1$=6とし、
$a_{n+1}$=$\displaystyle\frac{a_n+b_n}{2}$, $b_{n+1}$=$a_n$ ($n$≧1)
で定まる$a_n$, $b_n$を用いて、平面上の点$P_n$($a_n$, $b_n$)($n$=1,2,3,...)を定める。
(i)点$P_n$は常に直線$y$=$\boxed{\ \ ウ\ \ }x$+$\boxed{\ \ エ\ \ }$上にある。
(ii)$n$を限りなく大きくするとき、点$P_n$は点$\left(\boxed{\ \ オ\ \ }, \boxed{\ \ カ\ \ }\right)$に限りなく近づく。
この動画を見る 

数学「大学入試良問集」【17−2 Sn入り漸化式と極限】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#熊本大学#数学(高校生)#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
数列$\{a_n\}$について、$S_n=\displaystyle \sum_{k=1}^n a_k$ $n=1,2,3,・・・,S_0=0$とおく。
$a_n=S_{n-1}+n・2^n$ $n=1,2,3,・・・$ が成り立つとき、次の各問いに答えよ。
(1)$S_n$を$n$の式で表せ。
(2)極限値$\displaystyle \lim_{ n \to \infty }\displaystyle \sum_{k=1}^n\displaystyle \frac{2^k}{a_k}$を求めよ。
この動画を見る 
PAGE TOP