福田のわかった数学〜高校3年生理系093〜グラフを描こう(15)対数関数、凹凸、漸近線 - 質問解決D.B.(データベース)

福田のわかった数学〜高校3年生理系093〜グラフを描こう(15)対数関数、凹凸、漸近線

問題文全文(内容文):
数学$\textrm{III}$ グラフを描こう(15)
$y=x^3(\log x-\frac{4}{3})$のグラフを描け。凹凸、漸近線も調べよ。
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ グラフを描こう(15)
$y=x^3(\log x-\frac{4}{3})$のグラフを描け。凹凸、漸近線も調べよ。
投稿日:2021.11.10

<関連動画>

【高校数学】 数Ⅱ-135 対数関数①・グラフ編

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$a \gt 0.a≠1$とするとき、関数$y=\log_a x$を、$a$を①____とすると$x$の対数関数という。
ちなみに、$y=\log_a x$のグラフは、$y=a^x$のグラフと②____に関して対称。

◎次の関数のグラフを書こう。

③$y=\log_4 x$

④$y=\log_{\frac{1}{4}} x$
この動画を見る 

福田の数学〜上智大学2023年理工学部第3問〜対数関数の積分と数学的帰納法

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#数列#数学的帰納法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ $e$を自然定数の底とする。自然数$n$に対して、
$S_n$=$\displaystyle\int_1^e(\log x)^n dx$
とする。
(1)$S_1$の値を求めよ。
(2)すべての自然数$n$に対して、
$S_n$=$a_n e$+$b_n$, ただし$a_n$, $b_n$はいずれも整数
と表されることを証明せよ。
この動画を見る 

【数Ⅱ】【指数関数と対数関数】対数不等式1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#指数関数と対数関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の不等式を解け。
(1) $2\log_{0.1}{(x-1)} < \log_{0.1}{(7-x)}$
(2) $\log_{10}{(x-3)} + \log_{10}{x} \leq 1$
(3) $\log_{2}{(1-x)} + \log_{2}{(3-x)} < 1 + \log_{2}{3}$

次の方程式を解け。
(1) $2^x = 3^{2x-1}$
(2) $5^{2x} = 3^{x+2}$

次の方程式、不等式を解け。
(1) $(\log_{3}{x})^2 - \log_{2}{x^4} + 3 = 0$
(2) $(\log_{\frac{1}{2}}{x})^2 - \log_{\frac{1}{4}}x = 0$
(3) $(\log_{3}{x})^2 - \log_{9}{x} - 2 \leq 0$
(4) $(\log_{\frac{1}{3}}{x})^2 + \log_{\frac{1}{3}}{x^2} - 15 > 0$

次のxについての不等式を解け。
ただし、$a$ は 1 と異なる正の定数とする。
(1) $\log_{a}{(x+3)} < \log_{a}{(2x+2)}$
(2) $\log_{a}{(x^2 - 3x - 10)} \geq \log_{a}{(2x - 4)}$
この動画を見る 

【高校数学】 数Ⅱ-131 対数とその性質①

アイキャッチ画像
単元: #指数関数と対数関数#対数関数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$a \gt 0.a≠1$とするとき、任意の正の数$M$に対して$a^{p}=M$となる実数$P$が、ただ1つ定まる。
この$P$を、$a$を①____とする$M$の対数といい、$\log_aM$と書く。 また、$M$をこの対数の②____という。(対数の②‗‗‗‗‗‗‗は③____)

◎次の関係を④~⑥は$p=\log_aM$、⑦~⑨は$a^{p}=M$の形で表そう。

④$3^4=81$

⑤$8^{\frac{2}{3}}=4$

⑥$9^{-\frac{1}{2}}=\displaystyle \frac{1}{3}$

⑦$\log_264=6$

⑧$\log_5\sqrt{ 5 }=\displaystyle \frac{1}{2}$

⑨$\log_{10}\displaystyle \frac{1}{1000}=-3$
この動画を見る 

見掛け倒しの方程式 ちょっと気をつけてね

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$(\sqrt2)^{\log_2(x^2+x-6)^2}=-2x+4$
この動画を見る 
PAGE TOP