福田のわかった数学〜高校1年生072〜場合の数(11)組み分け - 質問解決D.B.(データベース)

福田のわかった数学〜高校1年生072〜場合の数(11)組み分け

問題文全文(内容文):
数学$\textrm{I}$ 場合の数(11) 組み分け
6個の玉を3個の箱に入れる方法は次の各場合に何通りあるか。
\begin{array}{|c|c|c|c|c|}
\hline
      & 玉に区別なし & 玉に区別なし & 玉に区別あり &玉に区別あり\\
      & 箱に区別なし & 箱に区別あり & 箱に区別なし &箱に区別あり\\
\hline
空箱可 & (1) & (3) & (5) & (7)\\
\hline
空箱不可 & (2) & (4) & (6) & (8)\\
\hline
\end{array}
\end{eqnarray}
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 場合の数(11) 組み分け
6個の玉を3個の箱に入れる方法は次の各場合に何通りあるか。
\begin{array}{|c|c|c|c|c|}
\hline
      & 玉に区別なし & 玉に区別なし & 玉に区別あり &玉に区別あり\\
      & 箱に区別なし & 箱に区別あり & 箱に区別なし &箱に区別あり\\
\hline
空箱可 & (1) & (3) & (5) & (7)\\
\hline
空箱不可 & (2) & (4) & (6) & (8)\\
\hline
\end{array}
\end{eqnarray}
投稿日:2021.10.30

<関連動画>

福田の数学〜慶應義塾大学2022年総合政策学部第6問〜新型ウィルス感染拡大による休業要請と補償金の期待値

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{6}}$新型ウイルスの感染拡大にともなって、ある国の自治体がある飲食店に1ヵ月間
の休業要請を行い、もし飲食店が要請に応じた場合、自治体は飲食店に補償金を
払うことになったものとする。いま、この飲食店は補償金が90万円以上であれば
要請に応じ、90万円未満なら要請に応じないものとする。補償金の額をC万円で
したとき、(C-90)万円を飲食店の超過利益と呼ぶことにする。もし$C \lt 90$
であれば、飲食店は要請に応じず、超過利益は0万円とする。
また、この自治体は支払うことのできる補償金の上限が定まっていて、それがD万円
$(D \geqq C)$であったとき、飲食店がC万円で要請に応じた場合、(D-C)万円は
補償金の節約分となる。ただし、飲食店が要請に応じなかった場合には、補償金の
節約分は0万円とする。
(1)まず、自治体が飲食店に休業要請する場合の補償金の額C万円を提示する場合
について考える。いま、自治体の補償金の上限が125万円であったとき、自治体
の補償金の節約分が最も大きくなるのは$C=\boxed{\ \ アイウ\ \ }$万円の場合である。
(2)次に、飲食店が自治体に休業要請し、自治体が申請を受理した場合に、飲食店
は休業と引き替えに補償金を受け取ることができる場合について考える。なお、
飲食店は休業申請をする際に90万円以上の補償金の額を自治体に提示するもの
とする。また、ここでは自治体が支払うことができる補償金の上限については、
125万円か150万円か175万円のどれかに定まっているが公表されておらず、
飲食店は125万円である確率が\frac{2}{5}、150万円である確率が\frac{1}{5}、175万円である
確率が\frac{2}{5}であると予想しているものとする。
ただし、飲食店が提示した補償金の額が、実際に自治体が支払うことができる上限
を超えていた場合、自治体は申請を受理せず、そのときの補償金の節約分は0万円
になり、申請が受理されなければ、飲食店は休業せず、超過利益は0万円になる。
たとえば、飲食店が休業申請をする際にC=160万円を提示した場合、飲食店
の超過利益(の期待値)は$\boxed{\ \ エオカ\ \ }$万円となる。
そこで、飲食店が超過利益(の期待値)を最も大きくする補償金の額を休業申請
の際に自治体に提示したとすると
$(\textrm{a})$飲食店の超過利益(の期待値)は$\boxed{\ \ キクケ\ \ }$万円であり、
$(\textrm{b})$自治体の補償金の上限が実際は125万円であった場合、補償金の節約分は
$\boxed{\ \ コサシ\ \ }$万円。
$(\textrm{c})$自治体の補償金の上限が実際は175万円であった場合、補償金の節約分は
$\boxed{\ \ スセソ\ \ }$万円。

2022慶應義塾大学総合政策学部過去問
この動画を見る 

【数A】【場合の数と確率】組み合わせ考え方の基本 ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#場合の数と確率#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
・5人乗りの車に5人が乗車してドライブをするとき、乗り方は何通りあるか。次の各場合について求めよ。
(1)5人全員が運転免許を持っている場合
(2)5人のうち3人だけが運転免許を持っている場合

・6個の数字0,1,2,3,4,5を使ってできる、次のような整数は何個あるか。ただし、同じ数字は2度以上使わないこととする。
(1)6桁の整数
(2)6桁の整数で5の倍数

・5個の数字0,1,2,3,4を使ってできる3桁の整数のうち、次のような整数は何個あるか。ただし、同じ数字は2度以上使わないものとする。
(1)偶数
(2)3の倍数
この動画を見る 

【高校数学】  数A-9  順列③ ・ 男女編

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎男子3人と女子5人が1列に並ぶとき、次のような並び方は何通りある?

①両端が女子
②両端の少なくとも1人は男子
③男子3人が続いて並ぶ
④どの男子も隣合わない
この動画を見る 

【数学A/中間テスト対策】順列の応用『辞書式配列』

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$a,b,c,d,e$を1つずつ使ってできる文字列を$abcde$から$edcba$まで辞書式に並べるとき、$cbdea$は何番目にあるか求めよ。
この動画を見る 

福田のわかった数学〜高校1年生091〜確率(11)反復試行の確率(5)東京大学の問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{A}$ 確率(11) 反復試行(5)
格子点上を次の規則で点$\textrm{P}$が動く。
$(\textrm{a})$最初、点$\textrm{P}$は原点にある。
$(\textrm{b})$ある時刻で点$\textrm{P}$が(m,n)にあるとき、その1秒後の点$\textrm{P}$の位置は等確率で
$(m+1,n), (m,n+1), (m,n-1), (m-1,n)$である。
6秒後に点$\textrm{P}$が直線$y=x$上にある確率を求めよ。

東京大学過去問
この動画を見る 
PAGE TOP