問題文全文(内容文):
$a$を$0$以下の定数とする。このとき,$f(x)=2x^3-3(a+2)x^2+8$と$g(x)=-3x^2-6ax$について,次の問いに答えよ。
(1)$x≧0$における$f(x)$の最小値を$m(a)$とする。$m(a)$を$a$の式で表せ。
(2)$s≧0,t≧0$を満たすすべての$s,t$に対して$f(s)≧g(t)$となる$a$の値の範囲を求めよ。
滋賀大過去問
$a$を$0$以下の定数とする。このとき,$f(x)=2x^3-3(a+2)x^2+8$と$g(x)=-3x^2-6ax$について,次の問いに答えよ。
(1)$x≧0$における$f(x)$の最小値を$m(a)$とする。$m(a)$を$a$の式で表せ。
(2)$s≧0,t≧0$を満たすすべての$s,t$に対して$f(s)≧g(t)$となる$a$の値の範囲を求めよ。
滋賀大過去問
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$a$を$0$以下の定数とする。このとき,$f(x)=2x^3-3(a+2)x^2+8$と$g(x)=-3x^2-6ax$について,次の問いに答えよ。
(1)$x≧0$における$f(x)$の最小値を$m(a)$とする。$m(a)$を$a$の式で表せ。
(2)$s≧0,t≧0$を満たすすべての$s,t$に対して$f(s)≧g(t)$となる$a$の値の範囲を求めよ。
滋賀大過去問
$a$を$0$以下の定数とする。このとき,$f(x)=2x^3-3(a+2)x^2+8$と$g(x)=-3x^2-6ax$について,次の問いに答えよ。
(1)$x≧0$における$f(x)$の最小値を$m(a)$とする。$m(a)$を$a$の式で表せ。
(2)$s≧0,t≧0$を満たすすべての$s,t$に対して$f(s)≧g(t)$となる$a$の値の範囲を求めよ。
滋賀大過去問
投稿日:2022.11.02