福田の数学〜立教大学2021年経済学部第3問〜直線の傾きと放物線との接線 - 質問解決D.B.(データベース)

福田の数学〜立教大学2021年経済学部第3問〜直線の傾きと放物線との接線

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} aを実数の定数とする。座標平面上の放物線C:y=-x^2+ax-\frac{(a-2-\sqrt3)^2}{4}, \\
直線l:y=(2+\sqrt3)x がある。lとx軸のなす角を\thetaとする。ただし0 \lt \theta \lt \frac{\pi}{2}とする。\\
このとき、次の各問いに答えよ。\\
(1)Cとlの共有点のx座標をaを用いて表せ。\\
(2)\tan\theta, \tan(\theta+\frac{\pi}{4}), \tan(\theta-\frac{\pi}{4})の値をそれぞれ求めよ。\\
(3)y切片が2であり、lとのなす角が\frac{\pi}{4}である直線の方程式を全て求めよ。\\
(4)(3)で求めた直線のうち、傾きが負であるものをmとする。\\
Cとmが接するときのaの値を求めよ。\\
また、そのとき、Cとmの接点の座標を求めよ。\\
(5)aを(4)で求めた値とするとき、C,mおよび\ y\ 軸で囲まれた図形の面積を求めよ。
\end{eqnarray}

2021立教大学経済学部過去問
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} aを実数の定数とする。座標平面上の放物線C:y=-x^2+ax-\frac{(a-2-\sqrt3)^2}{4}, \\
直線l:y=(2+\sqrt3)x がある。lとx軸のなす角を\thetaとする。ただし0 \lt \theta \lt \frac{\pi}{2}とする。\\
このとき、次の各問いに答えよ。\\
(1)Cとlの共有点のx座標をaを用いて表せ。\\
(2)\tan\theta, \tan(\theta+\frac{\pi}{4}), \tan(\theta-\frac{\pi}{4})の値をそれぞれ求めよ。\\
(3)y切片が2であり、lとのなす角が\frac{\pi}{4}である直線の方程式を全て求めよ。\\
(4)(3)で求めた直線のうち、傾きが負であるものをmとする。\\
Cとmが接するときのaの値を求めよ。\\
また、そのとき、Cとmの接点の座標を求めよ。\\
(5)aを(4)で求めた値とするとき、C,mおよび\ y\ 軸で囲まれた図形の面積を求めよ。
\end{eqnarray}

2021立教大学経済学部過去問
投稿日:2021.10.17

<関連動画>

大学入試問題#908「正確に対応するだけ」 #信州大学理学部(2024) #積分方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#信州大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
次の等式を満たす関数$f(x)$を求めよ
$f(x)=x+\displaystyle \int_{0}^{\pi} f(t) \cos(x+t) dt$

出典:2024年信州大学理学部
この動画を見る 

福田の数学〜早稲田大学2022年商学部第1問(2)〜対称式と最大値

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ (2)実数x,yがx^2+y^2\leqq 3を満たしているとき、x-y-xyの最大値は\boxed{\ \ イ\ \ }である。
\end{eqnarray}

2022早稲田大学商学部過去問
この動画を見る 

数学「大学入試良問集」【2−5 相加平均・相乗平均】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
以下の問いに答えよ。
(1)
正の実数$x,y$に対して
$\displaystyle \frac{y}{x}+\displaystyle \frac{x}{y} \geqq 2$
が成り立つことを示し、等号が成立するための条件を求めよ。

(2)
$n$を自然数とする。
$n$個の正の実数$a_1,a_2,・・・,a_n$に対して
$(a_1+・・・+a_n)\left[ \dfrac{ 1 }{ a_1 }+・・・+\displaystyle \frac{1}{a_n} \right] \geqq n^2$
が成り立つことを示し、等号が成立するための条件を求めよ。
この動画を見る 

福田の数学〜中央大学2023年理工学部第2問〜三角関数の近似値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ (1)$\displaystyle\frac{\pi}{12}$≦$x$≦$\displaystyle\frac{\pi}{6}$のとき、関数$\displaystyle\frac{\sin x}{x}$は$\boxed{\ \ サ\ \ }$する。このことより、
$\displaystyle\frac{\pi}{12}$≦$x$≦$\displaystyle\frac{\pi}{6}$では$\boxed{\ \ シ\ \ }$≦$\displaystyle\frac{\sin x}{x}$≦$\boxed{\ \ シ\ \ }$+0.05 が成り立つ。
$\boxed{\ \ サ\ \ }$の解答群
ⓐ 区間$\displaystyle\frac{\pi}{12}$≦$x$≦$\displaystyle\frac{\pi}{6}$で増加 ⓑ区間$\displaystyle\frac{\pi}{12}$≦$x$≦$\displaystyle\frac{\pi}{6}$で減少
ⓒ区間$\displaystyle\frac{\pi}{12}$≦$x$≦$\displaystyle\frac{\pi}{8}$で増加し、区間$\displaystyle\frac{\pi}{8}$≦$x$≦$\displaystyle\frac{\pi}{6}$で減少
ⓓ区間$\displaystyle\frac{\pi}{12}$≦$x$≦$\displaystyle\frac{\pi}{8}$で減少し、区間$\displaystyle\frac{\pi}{8}$≦$x$≦$\displaystyle\frac{\pi}{6}$で増加
ⓔ区間$\displaystyle\frac{\pi}{12}$≦$x$≦$\displaystyle\frac{\pi}{2}$で増加し、区間$\displaystyle\frac{\pi}{2}$≦$x$≦$\displaystyle\frac{\pi}{6}$で減少
ⓕ区間$\displaystyle\frac{\pi}{12}$≦$x$≦$\displaystyle\frac{\pi}{2}$で減少し、区間$\displaystyle\frac{\pi}{2}$≦$x$≦$\displaystyle\frac{\pi}{6}$で増加

$\boxed{\ \ シ\ \ }$の解答群
ⓐ0.8 ⓑ0.85 ⓒ0.9 ⓓ0.95 ⓔ1 ⓕ1.05 ⓖ1.1 ⓗ1.15

(2)底面が正五角形PQRSTで、側面が正三角形である正五角錐をKとする。ただし、Kの各辺の長さを1とする。底面にはないKの頂点をAとし、線分PQの中点をMとする。また線分PSの長さは$\boxed{\ \ ス\ \ }$である。これより、$\cos\angle SAM$の値は
$\boxed{\ \ セ\ \ }$-0.025≦$\cos\angle SAM$<$\boxed{\ \ セ\ \ }$+0.025
を満たす。さらに、(1)の$\displaystyle\frac{\sin x}{x}$についての結果より、$\angle SAM$の大きさは
$\boxed{\ \ ソ\ \ }$-1.5°≦$\cos\angle SAM$<$\boxed{\ \ ソ\ \ }$+1.5°
を満たす。
なお、必要ならば$\sqrt 2$=1.41..., $\sqrt 3$=1.73..., $\sqrt 5$=2.23... を用いてよい。

$\boxed{\ \ ス\ \ }$の解答群
ⓐ$\sqrt 2$ ⓑ$\sqrt 3$ ⓒ$\sqrt 5$ ⓓ$\displaystyle\frac{1+\sqrt 2}{2}$ 
ⓔ$\displaystyle\frac{1+\sqrt 3}{2}$ ⓕ$\displaystyle\frac{1+\sqrt 5}{2}$ ⓖ$\displaystyle\frac{\sqrt 2+\sqrt 3}{2}$ ⓗ$\displaystyle\frac{\sqrt 2+\sqrt 5}{2}$ 
ⓘ$\displaystyle\frac{\sqrt 3+\sqrt 5}{2}$ ⓙ$\displaystyle\frac{\sqrt 2+\sqrt 3}{3}$ ⓚ$\displaystyle\frac{\sqrt 2+\sqrt 5}{3}$ ⓛ$\displaystyle\frac{\sqrt 3+\sqrt 5}{3}$
 
$\boxed{\ \ セ\ \ }$の解答群
ⓐ-0.4 ⓑ-0.35 ⓒ-0.3 ⓓ-0.25 ⓔ-0.2 ⓕ-0.15 ⓖ-0.1 

$\boxed{\ \ ソ\ \ }$の解答群
ⓐ105° ⓑ108° ⓒ111° ⓓ114° ⓔ117° ⓕ120° 
この動画を見る 

三重大 無理数の証明

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)#三重大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)
$\sqrt{ 2 }$が無理数であることを証明せよ

(2)
$\sqrt{ 2 },\sqrt{ 3 },\sqrt{ 6 }$を項として含むような等差数列は存在しないことを証明せよ

出典:三重大学 過去問
この動画を見る 
PAGE TOP