福田の数学〜立教大学2021年理学部第3問〜定積分の漸化式と回転体の体積 - 質問解決D.B.(データベース)

福田の数学〜立教大学2021年理学部第3問〜定積分の漸化式と回転体の体積

問題文全文(内容文):
${\Large\boxed{3}}$nを0以上の整数とする。定積分
$I_n=\int_1^e\frac{(\log x)^n}{x^2}\ dx$
について、次の問(1)~(4)に答えよ。ただし、$e$は自然対数の底である。
(1)$I_0, I_1$の値をそれぞれ求めよ。
(2)$I_{n+1}$を$I_n$と$n$を用いて表せ。
(3)$x \gt 0$とする。関数$f(x)=\frac{(\log x)^2}{x}$の増減表を書け。
ただし、極値も増減表に記入すること。
(4)座標平面上の曲線$y=\frac{(\log x)^2}{x}$, x軸と直線$x=e$とで囲まれた図形を、
x軸の周りに1回転させてできる立体の体積Vを求めよ。

2021立教大学理工学部過去問
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#数列#漸化式#学校別大学入試過去問解説(数学)#不定積分・定積分#立教大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$nを0以上の整数とする。定積分
$I_n=\int_1^e\frac{(\log x)^n}{x^2}\ dx$
について、次の問(1)~(4)に答えよ。ただし、$e$は自然対数の底である。
(1)$I_0, I_1$の値をそれぞれ求めよ。
(2)$I_{n+1}$を$I_n$と$n$を用いて表せ。
(3)$x \gt 0$とする。関数$f(x)=\frac{(\log x)^2}{x}$の増減表を書け。
ただし、極値も増減表に記入すること。
(4)座標平面上の曲線$y=\frac{(\log x)^2}{x}$, x軸と直線$x=e$とで囲まれた図形を、
x軸の周りに1回転させてできる立体の体積Vを求めよ。

2021立教大学理工学部過去問
投稿日:2021.10.08

<関連動画>

【高校数学】等差数列の漸化式~覚えず理解しよう~ 3-15【数学B】

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
次の条件によって定められる数列$a_{ n }$の一般項を求めよ。
$a_{ 1 }=1, a_{ n+1}=a_{ n }+4$

$a_{ 1 }=1, a_{ n+1}=a_{ n }+3$

$a_{ 1 }=3, a_{ n+1}=a_{ n }-5$
この動画を見る 

福田の数学〜上智大学2024理工学部第2問〜漸化式と約数倍数の証明

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
次の条件によって定められる数列 ${a_n}$ を考える。
$a_1=2, \, a_{n+1}=a_n^2+a_n+1$
$(1)$ $a_n-2$ は $5$ で割り切れることを証明せよ。
$(2)$ $a_n^2+1$ は $5^n$ で割り切れることを証明せよ。
この動画を見る 

【高校数学】 数B-67 等比数列とその和③

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①数列$-5,a,b$が等比数列,数列$a,b,45$が等比数列をなすとき,
$a,b$の値を求めよう.

②3つの実数$a,b,c$に対して,$a+b+c=39,abc=1000$とする.
数列$a,b,c$が等比数列であるとき,$a,b,c$の値を求めよう.
この動画を見る 

福田の数学〜一橋大学2023年文系第4問〜群数列

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ xy平面上で、x座標とy座標がともに正の整数であるような各点に、下の図のような番号をつける。(※動画参照)点(m, n)につけた番号をf(m, n)とする。
たとえば、$f(1, 1)=1, f(3, 4)=19$ である。
(1)$f(m, n)+f(m+1, n+1)=2f(m, n+1)$
が成り立つことを示せ。
(2)$f(m, n)+f(m+1, n)+f(m, n+1)+f(m+1, n+1)=2023$
となるような整数の組(m, n)を求めよ。

2023一橋大学文系過去問
この動画を見る 

福田の数学〜東京医科歯科大学2023年医学部第2問PART2〜場合分けされた連立漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数B#数Ⅲ#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ xyz空間において、3点(0,0,0),(1,0,0),(0,1,0)を通る平面$\pi_1$と3点(1,0,0),(0,1,0),(0,0,1)を通る平面$\pi_2$を考える。$x_0$=1, $y_0$=2, $z_0$=-2として、点P${}_0$($x_0$,$y_0$,$z_0$)から始めて、次の手順でP${}_1$($x_1$,$y_1$,$z_1$), P${}_2$($x_2$,$y_2$,$z_2$),... を決める。
・$k$が偶数のとき、$\pi_1$上の点で点P${}_k$($x_k$,$y_k$,$z_k$)からの距離が最小となるものをP${}_{k+1}$($x_{k+1}$,$y_{k+1}$,$z_{k+1}$)とする。
・$k$が奇数のとき、$\pi_2$上の点で点P${}_k$($x_k$,$y_k$,$z_k$)からの距離が最小となるものをP${}_{k+1}$($x_{k+1}$,$y_{k+1}$,$z_{k+1}$)とする。
このとき、次の問いに答えよ。
(1)$\pi_2$に直交するベクトルのうち、長さが1で$x$成分が正のもの$n_2$を求めよ。
(2)$x_{k+1}$,$y_{k+1}$,$z_{k+1}$をそれぞれ$x_k$,$y_k$,$z_k$を用いて表せ。
(3)$\displaystyle\lim_{k\to\infty}x_k$, $\displaystyle\lim_{k\to\infty}y_k$, $\displaystyle\lim_{k\to\infty}z_k$を求めよ。
この動画を見る 
PAGE TOP