福田の数学〜立教大学2021年理学部第3問〜定積分の漸化式と回転体の体積 - 質問解決D.B.(データベース)

福田の数学〜立教大学2021年理学部第3問〜定積分の漸化式と回転体の体積

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} nを0以上の整数とする。定積分\\
I_n=\int_1^e\frac{(\log x)^n}{x^2}\ dx\\
について、次の問(1)~(4)に答えよ。ただし、eは自然対数の底である。\\
(1)I_0, I_1の値をそれぞれ求めよ。\\
(2)I_{n+1}をI_nとnを用いて表せ。\\
(3)x \gt 0とする。関数f(x)=\frac{(\log x)^2}{x}\ の増減表を書け。\\
ただし、極値も増減表に記入すること。\\
(4)座標平面上の曲線\ y=\frac{(\log x)^2}{x}, x軸と直線x=eとで囲まれた図形を、\\
x軸の周りに1回転させてできる立体の体積Vを求めよ。
\end{eqnarray}

2021立教大学理工学部過去問
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#数列#漸化式#学校別大学入試過去問解説(数学)#不定積分・定積分#立教大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} nを0以上の整数とする。定積分\\
I_n=\int_1^e\frac{(\log x)^n}{x^2}\ dx\\
について、次の問(1)~(4)に答えよ。ただし、eは自然対数の底である。\\
(1)I_0, I_1の値をそれぞれ求めよ。\\
(2)I_{n+1}をI_nとnを用いて表せ。\\
(3)x \gt 0とする。関数f(x)=\frac{(\log x)^2}{x}\ の増減表を書け。\\
ただし、極値も増減表に記入すること。\\
(4)座標平面上の曲線\ y=\frac{(\log x)^2}{x}, x軸と直線x=eとで囲まれた図形を、\\
x軸の周りに1回転させてできる立体の体積Vを求めよ。
\end{eqnarray}

2021立教大学理工学部過去問
投稿日:2021.10.08

<関連動画>

【数学】2022年度 第2回 K塾記述高2模試 全問解説(ベクトルはおまけ)、※修正箇所:問1(1)(概要欄へ)

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#数と式#2次関数#場合の数と確率#図形の性質#複素数と方程式#図形と計量#式の計算(整式・展開・因数分解)#一次不等式(不等式・絶対値のある方程式・不等式)#2次方程式と2次不等式#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#確率#図形と方程式#三角関数#複素数#三角関数とグラフ#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 理数個別チャンネル
問題文全文(内容文):
2022年度第2回全統記述高2模試全問解説動画です!
この動画を見る 

共通テスト2021年数学詳しい解説〜共通テスト2021年2B第4問〜数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#センター試験・共通テスト関連#共通テスト#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\large第4問}$
初項3、交差$p$の等差数列を$\left\{a_n\right\}$とし、初項3、公比$r$の等比数列を$\left\{b_n\right\}$と
する。ただし、$p \ne 0$かつ$r \ne 0$とする。さらに、これらの数列が次を満たすとする。
$a_nb_{n+1}-2a_{n+1}b_n+3b_{n+1}=0$ $(n=1,2,3,\ldots)\cdots$①

(1)$p$と$r$の値を求めよう。自然数$n$について、$a_n,a_{n+1},b_n$はそれぞれ
$a_n=\boxed{\ \ ア\ \ }+(n-1)p$ $\cdots$②
$a_{n+1}=\boxed{\ \ ア\ \ }+np$ $\cdots$③
$b_n=\boxed{\ \ イ\ \ }r^{n-1}$
と表される。$r \ne 0$により、すべての自然数$n$について、$b_n \ne 0$となる。
$\displaystyle \frac{b_{n+1}}{b_n}=r$であることから、①の両辺を$b_n$で割ることにより
$\boxed{\ \ ウ\ \ }a_{n+1}=r\left(a_n+\boxed{\ \ エ\ \ }\right)$ $\cdots$④
が成り立つことが分かる。④に②と③を代入すると
$\left(r-\boxed{\ \ オ\ \ }\right)pn=r\left(p-\boxed{\ \ カ\ \ }\right)+\boxed{\ \ キ\ \ }$ $\cdots$⑤
となる。⑤が全ての$n$で成り立つことおよび$p \ne 0$により、$r=\boxed{\ \ オ\ \ }$を得る。
さらに、このことから、$p=\boxed{\ \ ク\ \ }$を得る。
以上から、すべての自然数$n$について、$a_n$と$b_n$が正であることもわかる。

(2)$p=\boxed{\ \ ク\ \ },$ $r=\boxed{\ \ オ\ \ }$であるから、$\left\{a_n\right\},$ $\left\{b_n\right\}$の初項から第$n$項
までの和は、それぞれ次の式で与えられる。
$\sum_{k=1}^na_k=\displaystyle \frac{\boxed{\ \ ケ\ \ }}{\boxed{\ \ コ\ \ }}n\left(n+\boxed{\ \ サ\ \ }\right)$
$\sum_{k=1}^nb_k=\boxed{\ \ シ\ \ }\left(\boxed{\ \ オ\ \ }^n-\boxed{\ \ ス\ \ }\right)$

(3)数列$\left\{a_n\right\}$に対して、初項3の数列$\left\{c_n\right\}$が次を満たすとする。
$a_nc_{n+1}-4a_{n+1}c_n+3c_{n+1}=0$ $(n=1,2,3,\ldots)\cdots$⑥
$a_n$が正であることから、⑥を変形して、$c_{n+1}=\displaystyle \frac{\boxed{\ \ セ\ \ }a_{n+1}}{a_n+\boxed{\ \ ソ\ \ }}c_n$を得る。
さらに、$p=\boxed{\ \ ク\ \ }$であることから、数列$\left\{c_n\right\}$は$\boxed{\boxed{\ \ タ\ \ }}$ことがわかる。

$\boxed{\boxed{\ \ タ\ \ }}$の解答群
⓪すべての項が同じ値をとる数列である
①公差が0でない等差数列である
②公比が1より大きい等比数列である
③公比が1より小さい等比数列である
④等差数列でも等比数列でもない

(4)$q,u$は定数で$q \ne 0$とする。数列$\left\{b_n\right\}$に対して、初項3の数列$\left\{d_n\right\}$が
次を満たすとする。
$d_nb_{n+1}-qd_{n+1}b_n+ub_{n+1}=0$ $(n=1,2,3,\ldots)\cdots$⑦
$r=\boxed{\ \ オ\ \ }$であることから、⑦を変形して、$d_{n+1}=\displaystyle \frac{\boxed{\ \ チ\ \ }}{q}(d_n+u)$
を得る。したがって、数列$\left\{d_n\right\}$が、公比が0より大きく1より小さい
等比数列となるための必要十分条件は、$q \gt \boxed{\ \ ツ\ \ }$かつ$u=\boxed{\ \ テ\ \ }$
である。

2021共通テスト過去問
この動画を見る 

京都大学 確率 数列 融合問題 高校数学 Mathematics Japanese university entrance exam Kyoto University

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2005京都大学過去問題
1~nまでの番号のついてn枚($n \geqq 3$,自然数)から3枚取り出して小さい順に並べたときに等差数列になる確率を求めよ.
この動画を見る 

福田の一夜漬け数学〜数列・漸化式(5)連立漸化式〜高校2年生

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
次の漸化式を解け。
$\begin{eqnarray}
\left\{
\begin{array}{l}
a_{n+1}=4a_n+b_n\\
b_{n+1}=a_n+4b_n\\
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
a_1=1\\
b_1=2\\
\end{array}
\right.
\end{eqnarray}$


$\begin{eqnarray}
\left\{
\begin{array}{l}
a_{n+1}=a_n+4b_n\\
b_{n+1}=a_n+b_n\\
\end{array}
\right.
\end{eqnarray}$  

$\begin{eqnarray}
\left\{
\begin{array}{l}
a_1=1\\
b_1=1\\
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

漸化式 香川大(医)

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2-4x+1=0$の解を$\alpha,\beta(\alpha \gt \beta)$とする.

(1)$\alpha^n+\beta^m$は偶数であることを示せ.
(2)$[\alpha^n]$は奇数であることを示せ.

2018香川(医)過去問
この動画を見る 
PAGE TOP